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Abstract Melatonin, a pineal hormone, because of its wide activity spectrum, is a sub-
ject of much current interest for biologists and physicians. It has been dem-
onstrated that pineal gland is not an exclusive source of melatonin synthe-
sis. Melatonin synthesis has been found in different sites of the organism, 
and a major source of extrapineal melatonin is the gastrointestinal tract. 
The role of melatonin in gastrointestinal functions is considered in the pres-
ent review.
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Abbreviations: 
MT          melatonin, 
NAT         N-acetyltransferase, 
HIOMT     hydroxyindol-O-methyltransferase, 
ST           serotonin, 
GIT         gastrointestinal tract, 
CNS         central nervous system, 
DNES       diffuse neuroendocrine system, 
NSAID      non-steroidal anti-inflammatory drug, 
ATP         adenosine-triphosphate, 
cAMP       cyclic adenosine-monophosphate, 
RNA        ribonucleic acid, 
DNA        desoxyribonucleic acid, 
GABA      γ-amino-butyric acid

lation of many metabolic processes, inhibiting effect 
on pigment metabolism, anti-gonadotropic effects, sed-
ative and hallucinogenic action on the central nerv-
ous system (CNS), and an inhibitory effect on cell 
proliferation and division. MT stimulates oxygen con-
sumption and production of carbon dioxide, as well as 
glucose uptake by tissues, increases concentration of 
ATP and creatine phosphate and contributes to storage 
of glycogen in tissues [6,7]. 

The intensity of MT metabolism depends on the 
level of illumination. The activity of HIOMT in rat pi-
neal glands after keeping animals in darkness for 50 
days is 10 times more than in animals kept during the 
same period under constant light. The level of this en-
zyme in the pineal gland at night is 3.5 times higher 
than at the day. Similarly, concentration of MT in pine-
alocytes increases at night, whereas the level of sero-
tonin (ST) in them is 7–9 times lower at night than 
during the day. Probably at night and under conditions 
of artificial darkness ST is used for increased synthesis 
of MT. Therefore, there is observed evident dependence 
of MT synthesis on circadian rhythms [8].

The latest investigations on light/dark cycle and MT 
revealed that mechanisms underlying the daily and 
photoperiodic variations in MT level are related to reg-
ulation of MT receptor mRNA and protein at genetic 
level [9,10]. 

The effects of MT on reproductive function in mam-
mals have been identified in many species. In fact, MT 
is known to regulate annual fluctuations in breeding 
capability in animals maintained under natural photo-
periodic conditions [11,12]. From the other side, in lit-
erature occurs an opinion on the anti-gonadotropic ef-
fect of MT. For example, the anti-gonadotropic effect of 
MT is confirmed by the data on the delay of spontane-
ous vaginal opening, decrease in the weight of ovaries 
and lower frequency of estral cycle phases in immature 
female rats receiving MT per os with water for 28 days 
[13], as well as by inhibitory action of MT on testoster-
one secretion [14]. Actually, MT should not be thought 
of as either strictly an anti- or a progonadotropic factor 
but rather as a hormonal messenger of the pineal gland 
that appraises the reproductive system, as well as other 
organ systems, of the photoperiod environment. The 
following using of this information by a specific system 
is organ dependent [15]. 

MT, as well as other biogenic amines, possesses the 
neurotransmitter function in addition to its hormonal 
effects. Thus, it affects the permeability of postsynap-
tic membranes of the synaptic system and participates 
in this way in nerve impulse transmission. The trans-
mitter function is essential for the important role of 
biogenic amines in the functioning of the nervous sys-
tem: from visceral functions and to higher integrative 
functions of CNS such as behavior, learning and mem-
ory [16,17,18]. According to [1], MT is directly involved 
in transmission of the nerve impulse through the syn-
apse and, at higher doses, it decreases the functional 
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Introduction
Today melatonin (MT) is a well-known ubiquitously 

acting hormone, a key regulator of biological rhythms. 
Originally MT was found in pineal gland in 1958. [1]. 
During about 20 years after this discovery it was clearly 
demonstrated that MT plays a great role in much vi-
tally important physiological processes, such as control 
of biological rhythms, maturing and development of 
genitals, pigment metabolism, immune response, me-
tabolism of free radicals, monitoring of mood and sleep, 
cell proliferation and differentiation. Now it has been 
securely established, that pineal gland is not an exclu-
sive organ where MT is synthesized. Extrapineal MT is 
widespread in the organism of human and animal: MT-
producing cells are found in gastrointestinal tract, air-
way epithelium, pancreas, suprarenal glands, thyroid 
gland, thymus, urogenital tract, placenta and other or-
gans [2]. Moreover, an active synthesis of MT has been 
demonstrated in the non-endocrine cells, such as mast 
cells, natural killer cells, eosinophilic leukocytes, plate-
lets, endothelial cells and others [3]. Such a wide distri-
bution of MT in the organism determines its key role 
as intercellular neuroendocrine regulator and coordi-
nator of many complex and interrelated biological pro-
cesses. The highest content of extrapilneal MT is found 
in gastrointestinal tract (GIT): MT level in GIT or-
gans exceeds its nighttime peak in the pineal gland at 
400-fold [4]. Therefore the investigation of MT is of 
great importance to gain a better understanding of its 
functions and role in organism as a whole. 

What we know about MT?
In the late 50s a group of American dermatologist 

A. Lerner from Yale University identified MT in bovine 
pineal gland extracts [1]. A little later MT was found 
to be 5-methoxy-N-acetylated derivative of serotonin 
(N-acetyl-5-methoxytriptamine), with the key enzymes 
of its synthesis being N-acetyltransferase (NAT) and 
hydroxyindol-O-methyltransferase (HIOMT) [5]. 

The discovery of MT stimulated researchers’ inter-
est and for a number of years the pineal gland was con-
sidered to be the only source of MT. 

The most important physiological actions of MT in-
clude control of circadian and seasonal rhythms, stimu-
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activity of the cerebral cortex and subcortical 
brain structures by decreasing cortical neuron 
performance. 

In the literature of recent years appeared the 
data on the localization of MT not only in cyto-
plasm, but in the cell nucleus too [19]. Moreover, 
MT was found to have a capacity to scavenge free 
radicals and, therefore, to protect cell (in partic-
ular, its genome) from oxidative stress [20, 21]. 
Now it is well established that MT protects mac-
romolecules from oxidative damage in all subcel-
lular compartments. This confirms to the protec-
tion by MT of lipids and proteins, as well as both 
nuclear and mitochondrial DNA. MT achieves 
this widespread protection by means of its ubiq-
uitous actions as a direct free radical scavenger 
and an indirect antioxidant. Thus, MT directly 
scavenges a variety of free radicals and reactive 
species including the hydroxyl radical, hydrogen 
peroxide, singlet oxygen, nitric oxide, peroxyni-
trite anion, and peroxynitrous acid. Further-
more, MT stimulates a number of antioxidative 
enzymes including superoxide dismutase, glu-
tathione peroxidase, glutathione reductase, and 
catalase. These multiple actions make MT a po-
tentially useful agent in the treatment of neu-
rological disorders that have oxidative damage 
as part of their pathogenesis, such as Alzheim-
er’s disease [22]. Furthermore, now MT has been 

used successfully in sleep disorders [23, 24] and to treat epi-
lepsy [25].

It is known that at the very early stages of embryogenesis 
the biogenic amines play the role of specialized intracellular 
signaling molecules regulating processes of cell division [26]. 
Control of cell proliferation rate is the most important func-
tion of biogenic amines in general and MT in particular. It is 
also extremely important in the postnatal phase of life [7]. The 
prominent inhibitory effect of MT on cell division [27] has been 
demonstrated same as for colhicine, which acts as a protect-
ing substance. These data correlate with evidence of a certain 
anti-tumor effect of pineal gland extracts and MT [6, 28, 29]. 
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However, it should be noted, that MT not always acts as 
anti-tumor drug; sometimes its employment may prove 
deleterious, and the literature data on this problem are 
contradictory [30-35].

Among MT’s versatile functions, immunomodula-
tion has emerged as one of major effects of this hor-
mone in vertebrates [36]. Many studies have shown 
that MT plays a fundamental role in neuroimmuno-
modulation [37–39].

Featuring a wide activity spectrum, MT plays the 
role of a neuroendocrine signal coordinator and infor-
mation transducer, thus essentially affecting the ner-
vous, endocrine and immune systems and the organ-
ism as a whole.

Extrapineal MT: where and why?
 As soon as highly sensitive techniques of analysis 

and identification became available, MT and its cata-
lytic enzymes began to be found in extrapineal tissues, 
primarily those anatomically connected with the visual 
system. It must be noted that progress of knowledge 
about extrapineal sources of MT was based on develop-
ing a technique of obtaining highly specific antibodies 
to indolealalkylamines [40]. The use of such antibodies 
in a number of studies enabled the scientists to detect 
histologically, using the immunofluorescence method, 
the presence of MT in the retina, Harderian gland, 
and some other sites of the central nervous system 
in addition to the pineal gland [41,42]. In the same 

years, using biological and radioimmunological meth-
ods, as well as thin-layer chromatography, important 
data were obtained which indicated that after the re-
moval of the pineal glands, MT would still be identified 
in blood plasma and urine of laboratory animals and 
humans [43–45]. This indirectly supported the sugges-
tion of extrapineal sources of MT synthesis. Thus, a 
new era of MT research has begun. 

During the last three decades MT synthesis was 
found in many various organs, tissues and cells: in the 
gut, liver, kidneys, adrenals [46,47], in lymphocytes 
[48], in mast cells, natural killer cells, eosinophilic leu-
kocytes, thymic epithelial cells, some endothelial cells, 
placenta and endometrium [49]. The above list of the 
cell localization sites can signify that there are consid-
erable prospects for the future search for potential MT 
producers. Further research into the nature of MT syn-
thesis and deposition in non-endocrine cells seems to be 
very necessary.

Today the pineal gland is undoubtedly not the ex-
clusive site of MT production. The MT content in or-
ganism and its concentration in blood are accounted 
for not only by the pineal gland secretion, but also by 
extrapineal sources of its synthesis, changes in the vol-
ume of extracellular fluid, hormone binding with blood 
proteins, metabolism and excretion rates depending on 
different outer and inner regulatory factors. Function-
ally, MT-producing cells are certain to be part and par-
cel of the diffuse neuroendocrine system (DNES) as 
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a universal system of response, control and organism 
protection. Also, as within the whole DNES, two com-
partments may be distinguished in the MT-producing 
cells, viz central and peripheral. The central compart-
ment includes the MT-producing cells, which are as-
sociated with the visual system (pineal gland, retina, 
Harderian gland, and possibly others) whose secretion 
rhythm complies with the rhythm light-darkness. The 
peripheral compartment of the MT-producing cells in-
cludes other cells located in different organs, mainly 
gastrointestinal enterochromaffin cells (EC cells). 

 MT localization in retina was found immuno-
cytochemically [50,  51]. The fact that pinealectomy did 
not result in any alterations of retinal MT level, allowed 
to consider proved this hormone synthesis in retina 
as independent on pineal gland[52–54]. Furthermore, 
the presence of key enzymes of MT biosynthesis - NAT 
[52, 55, 56] and HIOMT [57–59] were shown in retinal 
tissue, as well as MT synthesis from labeled precursors 
(tryptophan and ST) has been demonstrated [60-62]. 
There are presented the evidences of MT synthesis in 
the layer of photoreceptor cells [63, 51], that seems to 
be more likely in cytoplasm of these cells [64, 65].

Light is a crucial factor for MT biosynthesis in the 
retina, as well as in the pineal gland [66]. Thus, it is 
interesting to note that light influences only one of 
two enzymes participating in MT synthesis, namely, 
the NAT [67, 52, 68, 56, 69]. Activity of another en-
zyme - HIOMT does not depend on light action [59, 
56]. Hence one can conclude that N-acetylation of ST 
represents the key step of MT biosynthesis in the ret-
ina, as well as in the pineal gland, [69].

Thus, the level of MT biosynthesis in the retina is 
determined by two essential factors: availability of its 
main precursor – ST and NAT activity [70,71]. There-
fore, the rhythm of retinal MT biosynthesis is defined 
and regulated by circadian “clock”, localized in eye; it 
is in agreement with circadian rhythm of pineal gland, 
but does not depend on that [66]. It must be noted that 
MT biosynthesis in retina appears to be more compli-
cated than in pineal gland. In the process of retinal 
MT synthesis there are involved additionally certain 
factors, such as cAMP [55,72], Ca2+ ions [73,74], dopa-
mine [75,76], GABA [77,78], and some else, that have 
not cleared up finally [66].

Available data permit to consider that regulation of 
physiological processes in complex “retina - retinal pig-
ment epithelium”, submitting to light regime, is an es-
sential function of retinal MT [69]. It enables to assume 
that in retina MT carries out a transductive function of 
coordinator in receiving, primary processing and trans-
mission of visual and nervous information.

Harderian gland (especial type of intra-orbital lacri-
mal glands in birds and some mammalians) is one of 
the sources of extrapineal MT synthesis [4,79,19]. Evi-
dently, MT synthesis in Harderian gland occurs as well 
as in pineal gland; at least, one of two key enzymes of 

MT biosynthesis – HIOMT – was found in Harderian 
gland [80, 81].

MT synthesis in Harderian gland been shown to 
comply with circadian rhythm, typical for pineal gland, 
but does not depend on it [82–84]. Moreover, by the 
data [54], there was observed a compensatory increase 
of MT content in Harderian gland of rats some weeks 
after pinealectomy. Physiological role of MT in Harde-
rian gland is not determined exactly as yet. 

Concerning of the peripheral compartment of MT-
producing cells, as it was mentioned above, these cells 
are widely distributed in the organism, but the total 
number of them are located predominantly in the gas-
trointestinal tract. 

Gut enterochromaffin cells are the main 
source of MT in organism
The integrated application of methods of biological 

testing, thin-layer chromatography and immunohisto-
chemical analysis, enabled the Russian scientists to be 
first to demonstrate the active MT synthesis in human 
gut enterochromaffin cells (EC cells) [46]. Three parts 
were followed in MT identification for EC cells. Ini-
tially it had to be found out whether MT was present in 
gut mucosa – in the same wall layer which houses EC 
cells; then MT location had to be identified in EC cells 
and, finally, we wanted to see if the hormone could be 
stored or synthesized in EC cells.

Arranging the re-make of classical Lerner’s experi-
ment for pineal glands, we repeat it only for appendix 
mucosa and the presence of MT in the extract receiv-
ing from 1500 human appendixes was obtained - when 
purified extracts of mucous membrane of human ap-
pendixes (especially rich in EC cells) were applied onto 
frog skin, and the sterile extract was injected into the 
lymphatic sac, the skin color was observed to become 
definitely lighter, which is characteristic of MT impact. 
The clearing effect of MT on the frog skin is detected 
in very low concentrations (10-12 g/ml) [85,46]. Con-
trol tests showed that 0.006% MT solution in ethanol 
had a similar effect, and chromatographic analysis con-
firmed that MT was presented in the mucous extracts 
used in the bio-tests [86]. Experimental studies of ex-
tracts prepared separately from appendixes with sim-
ple, phlegmonous and gangrenous inflammation (the 
mean number of argentaffin EC cells in crypts depends 
on the type of inflammation) showed that the frog 
skin-bleaching rate was related to the EC-cell content 
of the mucous membrane. Correlation between the 
frog skin-bleaching rate which is MT-specific and the 
number of EC cells seemed to be an indirect confirma-
tion of MT being present precisely in EC cells.

Chromatographic analysis of the tested extracts 
using as indicators of synthetic MT and its main pre-
cursors, showed the presence of 5-hydroxytriptophan, 
5-hydroxytriptamin (serotonin), 5-methoxytriptamin 
(mexamin) and MT. The fact that the extracts con-
tained immediate precursors of MT which are gener-

Gastrointestinal Melatonin: Cellular Identification and Biological Role
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ated in the chain tryptophan > serotonin > melatonin 
also supported the suggestion of MT being synthesized 
in EC cells.

However the ultimate answer to the question 
whether MT was presented in EC cells, was obtained 
owing to the application of the immunohistochemical 
techniques using antisera against MT and its immedi-
ate precursors: serotonin, N-acetylserotonin [87, 88]. 
Analysis of the coloring results using Coon’s indirect 
immunofluorescent method and the immunoperoxi-
dase method showed the presence of immunoreactive 
cells to MT and its precursors throughout the gastro-
intestinal tract in both human and common animals 
(dogs, rats and mice). When serial sections were com-
pared, one of which was treated with a specific antise-
rum, and the other was stained using the argentaffin 
method according to Masson, coincidence was observed 
of localization of argentaffin cells and the cells posi-
tively responding to the antiserum to MT.

Soon other scientists confirmed these results. Using 
the immunohistochemical method MT was detected in 
practically all parts of the rat gastro-intestinal tract 
[89]. It was emphasized that the MT distribution 
corresponded to localization of ST-producing argentaf-
fin cells. The fact that the MT-synthesizing enzyme 
HIOMT was localized in the gastrointestinal tract con-
firmed the occurrence of synthesis rather than just pas-
sive accumulation [90].

Mathematical analysis showed that the total num-
ber of EC cells throughout the gastro-intestinal tract 
would be significantly larger than the possible number 
of MT-producing cells of the pineal gland. This, as well 
as the fact that EC cells account for 95% of ST produc-
tion (ST being the principal precursor of MT), made it 
possible to consider EC cells as the main source of MT 
production in organism [91].

To date, the functional morphology of EC cells has 
been studied sufficiently well. However, not much is 
known about their functional role and factors induc-
ing EC cells activity. EC cells can serve as a “classic” 
example of receptor-effector endocrine cells, in which 
the biogenic amines and peptide hormones co-exist. In 
semi-thin sections impregnated with silver according 
to Masson, the cell’s apical part looks like a thin an-
tenna-shaped tentacle spreading into the tract open-
ing; the basal part is extended and filled with nu-
merous secretory granules. In ultra-thin sections, the 
secretory granules are of specific shape, size and high 
electron density of osmiophilic contents. The above 
ultrastructural features enable a clear distinction to be 
made between EC cells and other types of endocrine 
cells. The results of immunohistochemical investiga-
tions indicate the existence of several subpopulations 
of enterochromaffin cells. Such peptide hormones as 
motilin, substance P and enkephalines have been iden-
tified in EC cells. No answer has been obtained yet 

to the question, which of the subpopulations (or all of 
them) is able to synthesize MT from ST. 

Hence, EC cells represent one of the most numer-
ous groups of peculiar cells in digestive organs, which 
synthesize a whole series of biogenic amines and pep-
tide hormones. Now many experts agree that EC cells 
could be considered as a main source of MT in the or-
ganism. 

Melatonin regulates many gut functions
Besides, the presence of MT in EC cells [46], recep-

tors for MT and enzymes involved in its synthesis from 
tryptophan were detected in GIT tissues also [90, 92]. 
There are few experimental and clinical data regarding 
the role of MT in the regulation of GIT functions. It is 
hypothesized that MT plays an important role in physi-
ological activity of GIT. Disturbances in MT secretion 
of various genesis may result in GIT diseases.

MT is present in all portions of human and animal 
GIT (from the esophagus to the rectum). Maximum 
amounts of this hormone were found in the mucosa, 
while the submucosal and muscle layers contain the 
lowest concentrations of MT [89, 93, 94]. Studies with 
pinealectomized animals demonstrated that the con-
tent of MT in their GIT organs does not differ from 
the control [93]. The data suggest that MT is synthe-
sized in GIT organs. EC cells were shown to contain 
MT [46], as well as the enzyme HIOMT, that catalyzes 
transformation of N-acetylserotonin into MT [90]. The 
distribution of receptors for MT in GIT tissues is simi-
lar to its localization: the density of MT receptors in 
the mucosa is much higher than that in the submu-
cosal and muscle layers. The number of intracellular 
receptors for MT decreases in the following order: nu-
cleus > microsomes > mitochondria > cytoplasm [94, 
95]. Experiments with laboratory animals showed that 
the content of MT in GIT organs 400-fold surpasses its 
nighttime concentration in the pineal gland [4]. How-
ever, the contribution of MT produced in GIT into the 
total amount of circulating hormone is relatively small. 
It was reported that 90% MT diffusing from GIT tis-
sues into the portal vein are metabolized during the 
first passage through the liver [96]. This fact is con-
firmed by an 80% decrease in the concentration of cir-
culating MT in pinealectomized animals [43]. It re-
mains unclear whether MT secretion in GIT tissues is 
characterized by circadian rhythmicity, which is typi-
cal of hormone production in the pineal gland. Some 
authors reported diurnal/nocturnal differences in the 
content of MT in GIT [84, 94, 97], while others failed 
to reveal these peculiarities [43, 93]. Since GIT tissues 
contain MT of both local and circulation origins, these 
diurnal/nocturnal differences in hormone content in 
GIT are probably associated with MT diffusing from 
the circulation. No diurnal/nocturnal differences in 
the content of MT in the plasma of pinealectomized 
animals confirm the absence of circadian rhythmicity 
of hormone production in GIT tissues [44]. MT pro-
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duction in the pineal gland is synchronized by the 
light/dark cycle. By contrast, the synthesis and secre-
tion of MT in GIT tissues is regulated by eating and 
food composition. Experiments with animals and vol-
unteers revealed a sharp increase in the content of 
MT in GIT organs and circulation in response to food 
intake [98, 99]. Peroral treatment of humans and ani-
mals with pharmacological doses of L-tryptophan at 
daytime produced a significant increase in the concen-
tration of circulating MT, which was comparable with 
nocturnal MT peak [100–102]. 

L-tryptophan administration to pinealectomized an-
imals increased plasma MT content compared to that 
in controls not treated with the amino acid [100, 102]. 
The increase in plasma MT content in pinealectomized 
animals was less pronounced than that in sham-oper-
ated animals (insignificant) [100, 102]. Portal vein li-
gation abolished an increase in the concentration of 
circulating MT in sham-operated animals receiving 
L-tryptophan and pinealectomized animals [100]. All 
these results confirm the data firstly presented by 
Kvetnoy’ team that GIT tissues synthesize MT. In ad-
dition to this, local synthesis of MT in GIT depends on 
the content of tryptophan in food. In vitro addition of 
L-tryptophan or its metabolites (MT precursors) into 
the perfusate did not lead to MT synthesis in GIT tis-
sues [103]. Therefore, in vivo synthesis of MT by GIT 
tissues is under central regulation. This process can be 
also controlled by intestinal contents.

Similarly to various hormones, whose synthesis and 
presence were revealed in the CNS and GIT, the effects 
of MT are mediated by the humoral, neurocrine, para-
crine, and autocrine mechanisms [104, 94, 105]. Prob-
ably, the effects of MT synthesized in GIT are primar-
ily mediated by the paracrine mechanism, while pineal 
gland MT produces changes via the humoral and neu-
rocrine pathways. Besides biorhythmic, antioxidant, 
and immunomodulating activities, MT affects motor 
functions of GIT, microcirculation, and mucosal cell 
proliferation [106].

In vitro and in vivo experiments with animals 
showed that MT inhibits motor activity of GIT. The de-
gree of inhibitory effects is directly proportional to the 
tone and intensity of contractions in the stomach, duo-
denum, and small and large intestines [107, 108, 109,  
104]. MT inhibits motor activity of GIT organs stimu-
lated with various agents, e.g., ST [107, 104], KCl [110], 
and carbachol (cholinoreceptor agonist) [110]. There-
fore, the inhibitory effect of MT on muscle contractions 
is mediated by various mechanisms, including binding 
to specific [109] and ST-inhibiting receptors [105, 109] 
and regulation of activity of Ca2+ channels and Ca2+-
activated K+ channels in cell membranes [110]. Be-
sides direct effects of MT on muscle cell membranes, 
this hormone blocks nicotinic acetylcholine receptors 
on cells in the submucosal nervous plexus of the small 
intestine in guinea pigs [105]. These data indicate the 
neurocrine mechanism of MT effects on motor activity 

of GIT. Experiments with pinealectomized rats showed 
that pinealectomy suppresses interdigestive rhythmic 
contractions of the large and small intestines, while 
MT administration normalizes the rhythmicity of myo-
electric complexes [111, 112]. Therefore, MT modulates 
motor functions of the intestine and acts as the major 
regulator of motor activity in GIT organs. The feedback 
mechanisms underlying synthesis and secretion of MT 
and ST in animals [113, 114], as well as the relation-
ship between their effects [109, 115, 104, 116], are of 
particular interest in this respect. Immunohistochemi-
cal studies showed that rat GIT portions with maxi-
mum concentration of MT contain greater amounts 
of ST compared to those with low MT content [114]. 
Intraperitoneal injection of MT at physiological doses 
stimulated ST secretion in rat CNS [117, 114]. Treat-
ment of mice with physiological concentrations of ST 
increased the content of MT in CNS and various GIT 
portions [116]. The administration of exogenous MT to 
animals with an implanted container, which provided 
a gradual release of ST, attenuated markedly the in-
crease in MT content in GIT tissues and CNS com-
pared to that in animals treated with MT [116]. Experi-
ments with isolated pineal glands perfused with MT at 
physiological concentrations showed that MT at high 
doses (10-3) stimulates ST secretion; while at low doses 
(below 10-6) the hormone inhibits this process. It was 
demonstrated that MT regulates ST production by 
pinealocytes by stimulating or inhibiting ST transfor-
mation into 5-hydroxyindole acetic acid [118]. In vitro 
preincubation of GIT portions from rats with various 
concentrations of MT dose-dependently decreased the 
stimulatory effect of ST at physiological and pharma-
cological doses on motor activity of the portions iso-
lated (stomach, duodenum, jejunum, ileum, and large 
intestine) [119, 107, 109]. In vitro experiments showed 
that MT abolishes ST-induced contraction of vascular 
smooth muscles in various animal organs [115]. These 
data indicate the existence of the MT-ST system in GIT 
and CNS. It was shown that the mechanisms underly-
ing feedback regulation of secretion and effects of vari-
ous agents present in GIT and CNS are the same [120]. 
Besides the acetylcholine-norepinephrine system, the 
ST-MT system modulates motor activity of GIT and mi-
crocirculation at the paracrine level [119, 109, 99,110]. 
Impaired ST production contributes to the pathogen-
esis of gastrointestinal diseases, e.g., the irritable bowel 
syndrome and gastroesophageal reflux disease [121]. 
The reciprocal regulation of MT and ST production 
suggests that MT is involved in the pathogenesis of 
these disorders. Measurements of MT and ST concen-
trations in the plasma of infants from the first days 
after birth to 1 year demonstrated the absence of MT 
and circadian rhythmicity of its production over the 
first 3 month of life (except for the first week after birth 
when the plasma contained MT passed from the mater-
nal body through the placenta). However, plasma ST 
concentration at this period was higher than that in 
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infants greater than 3 months old [122]. It is hypoth-
esized that the absence of circadian rhythmicity of MT 
production and ST-MT misbalance contribute to eve-
ning intestinal colic in newborns that coincides with 
the nocturnal ST peak [122].

The existence of similar relationships between gas-
trin and MT is suggested. This assumption is based 
on experiments with animals receiving for a long time 
omeprazole to modulate hypergastrinemia [123]. MT 
abolished gastrin-induced acceleration of mucosal cell 
proliferation and stimulation of GIT motor activity 
[123]. Taking into account the similarity of chemical 
structures of MT and gastrin antagonist benzotript, 
it was hypothesized that MT counteracts the effect of 
gastrin by binding (i.e., blocking) to its receptors [123]. 
Thus, the effects of MT on GIT organs are probably 
mediated via binding to MT receptors or blockade of 
gastrin receptors. The existence of the gastrin-MT sys-
tem regulating functional state of GIT mucosal cells 
is confirmed by the following facts. First, MT and gas-
trin produce the opposite effects on intracellular cAMP 
concentration in GIT mucosal cells. Gastrin increases 
intracellular cAMP concentration [124], while MT de-
creases this parameter [123]. Second, MT and gastrin 
cause opposite changes in motor activity of GIT. And 
third, MT inhibits proliferation of GIT mucosal cells 
induced by hypergastrinemia [123]. In available litera-
ture, we found no data on the effect of MT on hydro-
chloric acid secretion by the gastric mucosa. Since MT 
inhibits production of cAMP playing an important role 
in hydrochloric acid secretion by parietal cells and acts 
as gastrin antagonist, it can be suggested that this hor-
mone suppresses HCl production. ST inhibits hydro-
chloric acid secretion (basal and stimulated with car-
bacholine, pentagastrin, and histamine) [125, 126] and 
stimulates gastrin production by G cells [127]. The 
data indicate that ST-induced inhibition of HCl produc-
tion results from its vasoconstrictor properties, but not 
from the effect on receptor-mediated mechanisms of 
this process. Therefore, our assumption that MT inhib-
its hydrochloric acid production is based on (but not in 
contradiction with) the notion of antagonistic relation-
ships between ST and MT regarding their effects on 
GIT functions.

Experiments with chicken and duck pineal glands 
showed that histamine stimulates cAMP production 
[128, 129], which indicates its important role in the reg-
ulation of pineal gland activity, including MT secre-
tion that depends on cAMP level [130]. Recent studies 
confirmed the stimulatory effect of histamine on MT 
secretion by isolated chicken pineal glands [131]. It 
was shown that chicken pineal gland contain histamine 
present in mastocyte-like cells and enzymes involved 
in its synthesis and inactivation [131]. Studies of rat 
pineal gland innervation revealed histaminergic nerve 
fibers [132]. It was noted that the interregulation of 
secretion of substances present in GIT and CNS is re-

alized by the same mechanisms [120]. Therefore, his-
tamine probably regulates secretion of MT by EC cells 
in GIT (similarly to CNS). Accounting of the anatomi-
cal similarity of MT-producing EC cells and histamine-
producing ECL cells allows to suggest that MT regulates 
histamine production by the paracrine mechanism.

It is known that cholecystokinin is an important 
regulator of GIT motor activity [133]. Pinealectomy 
suppresses interdigestive rhythmic motor activity of 
the intestine, which is normalized by exogenous MT 
[111, 112]. The data suggest the interrelation between 
MT and cholecystokinin [112]. This hypothesis was con-
firmed by the fact that pinealectomy abolished cholecys-
tokinin-induced stimulation of motor activity in the in-
testine. Treatment of pinealectomized animals with MT 
and cholecystokinin restored the effect of cholecystoki-
nin [112]. These results indicate that MT probably medi-
ates the influence of cholecystokinin on motor activity 
of GIT.

The effect of MT on microcirculation is associated 
with relaxation of vascular smooth muscles [115, 134]. 
The mechanism underlying MT-induced relaxation of 
vascular smooth muscles includes the regulation of Ca2+ 
and K+ influxes in cells by modulating functioning of 
Ca2+ and Ca2+-activated K+ channels in cell membranes 
rather than the stimulation of Ca2+ release from intra-
cellular stores [115, 134]. Intragastric administration of 
MT to rats with ischemic gastric ulcers decreased sig-
nificantly the incidence of ulceration and the size of ul-
cerative lesions [135, 136]. MT decreased the content of 
free radicals in the plasma and enhanced blood supply to 
the stomach wall [136]. Doppler ultrasonography used 
in experiments on rats with 40% ethanol-induced gastric 
ulcers showed that MT decreased the incidence of ulcer-
ation, increased blood flow in the stomach wall, and nor-
malized blood supply to the gastric mucosa inhibited by 
ST [137]. Therefore, the antiulcer effect of MT is related 
not only to its antioxidant properties, but also to the im-
provement of microcirculation [137].

Experiments with animals showed that pinealectomy 
stimulates proliferative activity of cells in various organs, 
including the GIT system [138–140]. The effect of MT 
on proliferation of GIT mucosal cells is realized by the 
humoral and neurocrine pathways: vagotomy and local 
sympathectomy attenuated pinealectomy-induced accel-
eration of proliferation of small intestine crypt cells. 
However, proliferative activity of these cells remained 
above the control [140]. MT is probably one of the most 
potent regulators of cell proliferation in the GIT mu-
cosa. It was shown that proliferative activity of mucosal 
cells in the small and large intestines of rats remained 
high for at least 6 months after pinealectomy (consid-
erable period of the rat life span). Cell proliferation in 
pinealectomized animals was not normalized for a long 
period, which indicates an important role of MT in the 
regulation of proliferative processes in the GIT mucosa. 
The phenomenon of MT-induced inhibition of cell prolif-
eration was studied in in vitro and in vivo experiments 
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in the field of oncology [141]. However, these experi-
mental and clinical observations were performed with 
pharmacological doses of MT used as monotherapy or 
in combination with interleukin [142–145]. The data 
that various physiological doses of MT produce the op-
posite effects on mucosal cell proliferation in the small 
intestine are of considerable interest in this respect. 
MT inhibited proliferative activity of cells, if its concen-
tration in the perfusate was similar to diurnal levels of 
circulating hormone. However, MT at a concentration 
similar to its nocturnal level in the circulation stimu-
lated cell proliferation [146, 147]. These experimental 
facts are consistent with published data showing circa-
dian rhythmicity of cell proliferation in various organs 
with maximum activity in the nighttime period [148]. 
On the one hand, circadian rhythmicity of MT secre-
tion plays an important role in rhythmic processes in 
the body and on the other hand regulates cells prolif-
eration. MT modulates cell proliferation probably by 
stimulating prostaglandin E2 production, which was 
demonstrated in experiments with gastric ulcers in 
rats induced by piroxicam (nonsteroid antiinflamma-
tory drug) administration [149]. The inhibition of pros-
taglandin E2 synthesis was abolished by intragastric 
administration of MT at doses of 1, 3, and 7.5 mg/kg. 
Subcutaneous injection of MT at the same doses had 
no effect on prostaglandin E2 synthesis in the gastric 
mucosa. The data indicate that this effect realized by 
the paracrine mechanism was associated with the MT 
fraction synthesized in the GIT mucosa [149]. It was 
hypothesized that the mechanism underlying MT-in-
duced stimulation of prostaglandin E2 synthesis in-
volves the activation of cyclooxygenase, which poten-
tiates production of prostaglandins, prostacyclin, and 
thromboxane from polyunsaturated fatty acids [150]. 
Since prostaglandins E and thromboxane inhibit secre-
tion of hydrochloric acid and pepsin, but stimulate pro-
duction of bicarbonates in the gastric mucosa [151], 
it can be suggested that endogenous MT synthesized 
in the GIT mucosa produces similar effects on gastric 
secretion. Enprostil (synthetic prostaglandin E2 ana-
logue) displays antigastrin activity and decreases blood 
gastrin concentration via the direct regulation of gas-
trin production by G cells [152]. Thus, MT-induced 

stimulation of prostaglandin E2 synthesis indicates 
that this hormone is involved in mucosal protection 
damaging factors.

Thus, it seems to be as a fact, that MT produces 
various effects on GIT organs. Studies of its role in 
the regulation of GIT functional activity are of consid-
erable theoretical and practical importance since MT 
holds much promise as a potent drug.

General conclusions
 Summing up this review, it is necessary to reveal the 

main points of data analyzed. The first, MT is an ubiq-
uitously acting hormone with a wide spectrum of ef-
fects. Among these are control of biological rhythms, 
influence on reproductive cycle, immune response, 
scavenge of free radicals, monitoring of mood and sleep, 
cell proliferation and differentiation and so on. MT 
secretion is related to the photoperiod in a circadian 
model of low activity during light phase and high activ-
ity in a dark time. 

The second, MT synthesis takes place not only in 
the pineal gland, but also to a greater extent this 
process is observed in widely distributed cells in the 
whole organism, therewith the gastrointestinal tract 
is a major source of extrapineal MT [153], where it is 
synthesized essentially by intestinal EC cells [46]. 

And the third, in the recent years there has been 
found, that MT can protect gastrointestinal mucosa 
from ulceration by its antioxidant action, stimulation 
of the immune system and by fostering microcircula-
tion and epithelial regeneration [153]. Moreover, MT 
may interact with receptors and subsequently stimu-
late the synthesis of gastroprotective hormones and 
also exerts a direct defense on the epithelium, enhances 
submucosal blood flow and prevents the damage in-
duced by ischemia followed by reperfusion. Studies 
have shown that treatment with MT reduces the sever-
ity of the lesions induced by NSAIDs on gastric mucosa 
suggesting a beneficial role of MT in preventing this 
gastropathy related to antiinflammatories [154] There-
fore, MT can be considered as a potential gastroprotec-
tive agent in various pathologies of the digestive tract.
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