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Abstract Modern science begins to understand pleasure as a potential component of salu-
togenesis. Thereby, pleasure is described as a state or feeling of happiness and 
satisfaction resulting from an experience that one enjoys. We examine the neuro-
biological factors underlying reward processes and pleasure phenomena. Further, 
health implications related to pleasurable activities are analyzed. With regard to 
possible negative effects of pleasure, we focus on addiction and motivational tox-
icity. Pleasure can serve cognition, productivity and health, but simultaneously 
promotes addiction and other negative behaviors, i.e., motivational toxicity. It is a 
complex neurobiological phenomenon, relying on reward circuitry or limbic activ-
ity. These processes involve dopaminergic signaling. Moreover, endorphin and 
endogenous morphinergic mechanisms may play a role. Natural rewarding activ-
ities are necessary for survival and appetitive motivation, usually governing ben-
eficial biological behaviors like eating, sex and reproduction. Social contacts can 
further facilitate the positive effects exerted by pleasurable experiences. How-
ever, artificial stimulants can be detrimental, since flexibility and normal control 
of behavior are deteriorated. Additionally, addictive drugs are capable of directly 
acting on reward pathways. Thus, the concrete outcome of pleasant experiences 
may be a question of dose. Moderate pleasurable experiences are able to enhance 
biological flexibility and health. Hence, pleasure can be a resistance resource or 
may serve salutogenesis. Natural rewards are mediated by sensory organ stim-
ulation, thereby exhibiting a potential association with complementary medi-
cal approaches. Trust and belief can be part of a self-healing potential connected 
with rewarding stimuli. Further, the placebo response physiologically resembles 
pleasure phenomena, since both involve brain’s reward circuitry stimulation and 
subjective feelings of well-being. Pleasurable activities can stimulate personal 
growth and may help to induce healthy behavioral changes, including stress man-
agement. However, more research is needed to better understand the nature, 
neurobiology and maybe dangerous aspects of pleasure. Also, a possible involve-
ment of endogenous morphinergic signaling has to be studied further.
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Introduction

Medicine is typically interested in disease-promot-
ing factors and ways to cure. However, health-en-
hancing factors are becoming more popular, and the 
concept of salutogenesis and its association with self-
care is of growing importance [1,2]. This may be due to 
money shortage in the health care system – in relation 
to its demands – and the rapidly increasing interest in 
preventive medicine and disease avoidance.

For neuroscientists, the brain most often is related 
to neural disorders and disease mechanisms – which 
are of interest, undoubtedly. But much could also be 
learned by studying the brain in relation to health. 
The brain has processes and salutogenic functions that 
contribute to health by enabling one’s experiences in 
life to benefit one’s health (Figure 1) [3]. Science has 
ever neglected positive sensations and mind states like 
satisfaction and contentment, solely focusing upon 
pathogenetic processes. For example, a vast number of 
publications on depression and mental disorders exist, 
but only a few describe possible mechanisms underly-
ing feelings of joy and bliss.

What makes one feel good instead of bad? What are 
possible resources within the brain that medicine may 
want to use? May pleasure possibly be a concept that is 
available for each individual to protect from disease or 
serve health processes? Besides feeling good, what are 
the biological implications of pleasurable sensations, 
and what are the risks of pleasure-seeking behavior, 
i.e., addiction? May pleasure, at last, facilitate survival 
and early death likewise?

With this work we try to examine the neurobiology 
of pleasure and shed some light on implicated risks, 
health consequences and molecular mechanisms in 
connection with the pleasure phenomenon.

Reward and motivation

Research has identified a biological mechanism 
mediating behavior motivated by events commonly 
associated with pleasure. This mechanism is called 
‘reward’. It is usually governing normal behavior 
through pleasurable experiences [4]. Pleasure, how-
ever, describes a ‘state or feeling of happiness or sat-
isfaction resulting from an experience that one enjoys’ 
[5]. Pleasure is a subjective phenomenon, i.e., subjec-
tive quality. Hence, an intimate association between 
reward and pleasure exists [4,6]. In neurobiology, 
pleasure is a competence or function of the reward and 
motivation circuitries that are imbedded in the central 
nervous system (CNS). Anatomically, these reward 
pathways are particularly linked to the brain’s limbic 
system. The underlying physiology, however, is com-
plex and morphological correlates are still a matter of 
thorough research.

Motivation may be divided into two categories – ap-
petitive and aversive motivation. Appetitive motiva-
tion concerns behavior directed towards goals that 
are normally associated with positive hedonic, i.e., 
pleasurable, processes (food, recreational drugs, sex 

etc.). In contrast, aversive motivation involves getting 
away from hedonically unpleasant conditions [4]. Con-
sequently, two fundamental forces rule motivation: 
pleasure and pain. It has been suggested that pleasure 
may be associated with beneception, events that facili-
tate survival and thus ‘benefit’ the organism or species 
from an evolutionary biology perspective [7]. Pain, on 
the other hand, is associated with nociception. This lat-
ter term basically describes conditions that may have 
undesirable biological consequences for an organism 
[4,7]. However, the illustrated division of pleasure and 
pain in reference to their possible biological functions 
and outcome should not lead to an incorrect under-
standing, since both conditions – in specific situations 
– may have the capacity to serve survival and ‘amuse-
ment’ likewise. Thus, pain and pleasure potentially 
merge into another. With regard to specialized brain 
compartments involved in motivational processes, the 
physiological substrate for appetitive or aversive mo-
tivation (as for reward and avoidance) primarily lies 
within the limbic system [8–12].

The common idea that the limbic system is solely 
concerned with feelings and emotion is at best a half-
truth, but there certainly exists a connection which 
is relevant to the pleasure phenomenon [13]. Yet, the 
limbic system is made up of the limbic lobe and certain 
additional structures (Figure 2) [14]. The limbic lobe 
surrounds the corpus callosum and consists of the 
cingulate gyrus and the parahippocampal gyrus. The 
hippocampus, which is in the floor of the temporal 
horn of the lateral ventricle and is closely linked to 
memory processing, is also included in the limbic lobe 
[14]. Additional structures incorporated in the limbic 
system are the dentate gyrus, amygdala, hypothala-
mus (especially the mammillary bodies), septal area 
(in the basal forebrain) and thalamus (anterior and 
some other nuclei). Functionally, the ‘hippocampal 
formation’ consists of the hippocampus, the dentate 
gyrus and most of the parahippocampal gyrus [13].

Neurobiologists have long known that the euphoria 
induced by drugs of abuse, sex or other things we enjoy 
arises because all these factors ultimately boost the 
activity of the brain’s pleasure and reward systems. 
These are made up of complex circuits of nerve cells or 
neurons that evolved to make us feel flush after eating 
or sex – things we need to do to survive and pass along 
our genes [15,16]. Reward pathways are evolutionarily 
ancient, like limbic structures. Limbic and reward sys-
tems share common mechanisms and morphological 
structures. In fact, integral CNS components involved 
in reward and motivational processes are of limbic 
origin [14]. For example, prefrontal or orbitofrontal 
cortices, cingulate gyrus, amygdala, hippocampus 
and nucleus accumbens participate in the reward 
physiology [8]. Thus – pleasure, limbic system and re-
ward circuitry seem to be biologically interconnected. 
Memories of the pleasure of wellness, i.e., ‘remem-
bered wellness’, are accessible to this circuitry through 
hippocampal mechanisms [14]. Further, belief affects 
mesocortical-mesolimbic appraisal of a pleasurable 
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experience, leaving one, for example, well and relaxed 
(see below).

The same pleasant experience – like eating choco-
late – may turn into an unpleasant one when a plea-
surable activity is continued for an extended period of 
time. Interestingly, in an experiment testing this sub-
jective quality change of an ongoing activity, the orbi-
tofrontal cortex (OFC) proved to be a crucial but func-
tionally segregated structure: caudiomedial parts of 
the OFC, in addition to the subcallosal region, insula/
operculum, striatum and midbrain, were recruited 

when subjects eating chocolate were highly motivated 
to eat and rated the chocolate as very pleasant [17]. 
In contrast, eating chocolate despite being satiated 
activated the caudolateral OFC (and other regions of 
the brain) [17]. Accordingly, modulation was observed 
in cortical chemosensory areas – including insula and 
caudiomedial/caudolateral OFC – suggesting that the 
reward value of food is represented there. However, 
the medial and lateral caudal OFC showed opposite ac-
tivity patterns, indicating a functional segregation of 
the neural representation of reward and punishment 

�������

������

���������

����������
����������
�����������
�������� �������

���������
������������� ������

�������������

����������

���������������� ����������

Figure 1. Opioid peptides have been shown to be involved with reward signalling in the central nervous 
system [140]. Interestingly, in the methionine enkephalin precursor, proenkephalin, a potent antibacterial 
peptide is found that is also bracketed by basic amino acids, indicating cleavage sites. Thus, when called 
upon both molecules will appear, i.e., trauma or pleasure, demonstrating a association with feeling good 
and protection [140].

Figure 2. Anatomy of the Limbic System. 
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within this region. The only brain region that was ac-
tive during both positive and negative compared with 
neutral conditions was the posterior cingulate cortex 
[17]. These findings support the presented hypothesis 
that two separate motivational system exist: one facili-
tating approach and another avoidance behaviors [17]. 
Nonetheless, reward and punishment are functionally 
– and anatomically – closely interconnected.

A crucial component of CNS reward and motiva-
tion circuitries are nerve cells that originate in the 
ventral tegmental area (VTA), near the base of the 
brain. These cells send projections to target regions 
in the frontal brain – most notably to a structure deep 
beneath the frontal cortex, i.e., nucleus accumbens 
[15,16]. The essential neurotransmitter of this connec-
tion is dopamine, as described below. Clearly, the VTA 
or mesolimbic dopamine system represents a rather 
old but very effective part of motivational physiology 
and behavior. However, in mammals (humans), the 
reward circuit is more complex, and it is integrated 
with several other brain regions that serve to enrich 
an experience with emotion (as an example) and direct 
the individual’s response or behavior toward reward-
ing stimuli, including food, sex and social interaction 
[6]. The amygdala, for instance, is a special part of 
limbic and reward systems that is closely related to 
emotion (especially fear) and has many post-synaptic 
receptors for which gamma-aminobutyric acid (GABA) 
is an inhibitory neurotransmitter [14]. Diazepam and 
other anxiolytics mimic the action of GABA at this 
site. Researchers have hypothesized that pleasurable 
experiences like various complementary medical treat-
ments – e.g., acupuncture – may exert calming effects 
via release of GABA in the amygdala and other limbic 
areas [13,14]. This speculative aspect may be sup-
ported by recent findings that link endogenous mor-
phine production to limbic structures and complemen-
tary or alternative medicine (CAM) [14]. Thus, on the 
neurochemical level, pleasure may involve substances 
that possess calming and anxiolytic capacities, thereby 
facilitating feelings of well-being and relaxation (see 
below).

The amygdala also helps to assess whether an ex-
perience is pleasurable or aversive (and whether it 
should be repeated or avoided) and further helps to 
forge connections between an experience and other 
cues [15,16]. Meanwhile, the hippocampus partici-
pates in recording memories of an experience, includ-
ing where, when and with whom it occurred [6]. The 
frontal cortex, however, coordinates and processes all 
this information and consequently determines the ul-
timate behavior. Finally, the VTA-accumbens pathway 
acts as a measuring tool and regulator of reward: it 
‘tells’ the other brain centers how rewarding an activ-
ity is [6]. The more rewarding an activity is deemed, 
the more likely the individual is to remember it well 
and repeat it [6].

With regard to frequent neuronal reward ‘tracks’ 
within the CNS, activation of the medial forebrain 
bundle (MFB), as it courses through the lateral hypo-
thalamus to the ventral tegmentum, has been shown 

to produce robust rewarding effects [4,18]. Again, 
dopamine is involved [19]. Electrophysiological and 
neurochemical techniques revealed: CNS stimulation 
may activate a descending component of the MFB 
which is synaptically coupled at the ventral tegmen-
tum to the ascending mesolimbic dopamine system, 
i.e., nucleus accumbens [4,6,18,19,20]. Pleasure-induc-
ing electrical stimulation thus involves a circuitous re-
ward pathway, first activating a descending MFB com-
ponent and then the ascending mesolimbic dopamine 
pathway. Clearly, we can speak of brain’s reward and 
motivation circuitries.

Taken together, the brain possesses specialized 
pathways that mediate pleasure, reward and motiva-
tion. Psychomotor stimulants and opiates – similar 
to experimental electrical stimulation – activate this 
reward system by their pharmacological actions in the 
VTA and nucleus accumbens [15,16,20]. Ventral teg-
mental activation, however, as well as other essential 
CNS reward features involves dopamine signaling. 
Other neurotransmitters (e.g., GABA, glutamate, 
serotonin, stress hormones) may play a critical role 
too [21,22]. In addition, endogenous morphine/opioid 
peptide production may be of importance (discussed 
below). Natural rewards like food and sex in accor-
dance with other substances, such as caffeine, ethanol, 
nicotine etc., may also activate brain’s reward and mo-
tivation circuitries [20].

Pleasure and addiction

Reward and motivation can be considered a natural 
component of normal behavior. Clearly, reward path-
ways serve to direct behavior towards goals that are 
normally beneficial and promote survival of an organ-
ism or species, e.g., food and water intake, reproduc-
tive activities [7]. These generally pleasurable actions 
are useful and may not constitute addiction. However, 
a loss of flexibility and the disability to make free deci-
sions, i.e., extreme control of behavior, as described in 
addiction, may be seen as one of the distinguishing 
features between pleasure/reward and addiction. This 
addiction-related behavioral inflexibility and the im-
possibility of normal rewards to govern behavior may 
be called motivational toxicity [4].

Some drugs, like cocaine and heroin, quickly and 
uniformly exert extreme control over behavior, while 
others are less potent – such as moderate alcohol 
consumption or occasional nicotine use [4]. The most 
powerful drug rewards include the psychomotor stim-
ulants (e.g., amphetamine, cocaine) and opiates (e.g., 
heroine, morphine). Indeed, drug influence on behav-
ior not only depends on the amount, duration and 
frequency of abuse but also on the type of substance 
involved [15,16,23,24]. Needless to say that personal-
ity, social and genetic factors – in addition to individual 
differences in reward or motivation system function-
ing and physiology – may also play an important role 
[4,6,8,14,25–36]. However, drug-induced CNS effects 
remain the primary determinants of chemical drug 
addiction, whereas nonpharmacological factors are 
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likely to influence initial drug use and determine how 
rapidly an addiction develops [4,15,16]. Beyond that, 
gambling and other ‘behavioral addictions’ may in-
volve the same reward pathways like chemical drugs 
[6]. The fact that chemicals are strongly capable of 
influencing behavior may not constitute addiction any 
more than the chemical reactions underlying taste, 
smell etc., i.e., positive or pleasurable sensations. Con-
sequently, chemical or nonchemical reward induction 
may stand for ameliorating or deteriorating effects 
likewise, and this may account for secondary health 
implications (described below).

Addiction is seen as a behavioral syndrome where 
drugs inevitably control over behavior. It is not 
defined, at least in the first place, by physiological 
withdrawal reactions accompanying abstinence [4]. 
Thereby, drug abuse develops along a continuum, 
starting with casual or recreational use (i.e., pleasure) 
and ending where drugs dominate the individual’s 
behavior (i.e., addiction, motivational toxicity) [37]. 
Taken together, addiction may be characterized by a 
loss of control over pleasurable and biologically useful 
events (‘healthy drug use’), turning a positive motiva-
tion into a disaster.

When humans neglect formerly potent rewards 
like career, wealth or sex and focus their behavior on 
drug consumption only, they may be considered drug 
addicts (Figure 3). However, the pathophysiology re-
sponsible for this disruption of normal motivational 
hierarchies, i.e., motivational toxicity, is still specula-
tive. While rewards normally effective in influencing 

behavior lose their ability to motivate an organism, 
deteriorated dopaminergic functions and a loss of 
balance (homeostasis) – as well as an autoregulatory 
inflexibility – may predominate [26,38]. Other po-
tentially detrimental molecular mechanisms may be 
important too. This failure of ‘healthy’ biochemical 
signaling pathways to return to normal – resembling 
the chronic stress pathophysiology – may be fol-
lowed by hazardous health consequences over time 
[10,26,39,40]. Instead of natural reward processes 
that promote health and survival, possibly mediated 
by moderate sensory organ stimulation, direct phar-
macological activation of CNS reward and motivation 
circuitries (via drug ingestion) determines behavior 
[4]. Thus, motivational toxicity distinguishes drug 
addiction from simple stimulus or drug activation of 
reward mechanisms.

Activation of brain reward systems produces 
changes in affect ranging from slight mood elevation 
to intense pleasure and euphoria, and these physiolog-
ical states usually help direct behavior toward natural 
rewards [41–44]. Some chemicals, however, bypass 
the sensory receptors mediating natural rewards (see 
above; Figure 3). In fact, caffeine, alcohol and nicotine, 
given as examples, all activate brain reward pathways 
directly. Moderate use of these substances (especially 
alcohol) has gained widespread acceptance. More-
over, low-dose consumption sometimes is considered 
healthy [45–48]. Further, some drugs are known for 
their recreational use, involving, for instance, desir-
able psychological effects – such as relaxation and 
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Figure 3. Individuals have conventional motivation items that depend on brain neural circuits as described 
in the text (A). Once these motivational items are achieved such endowed individuals feel good, i.e., reward 
processes. These processes in part depend on opioid and opiate signaling. If these chemical messengers are taken 
exogenously (B) normal motivational stimuli are lost since the same result can be achieved by bypassing these 
processes. However, because high doses of these chemical messengers can be taken these neural circuits become 
tolerant to these substances, and by the circuits’ nature the individual wants to experience more artificial reward 
process activity, leading to higher doses and eventual dependence. Thus, substances of abuse create a short-
circuit, producing reward activity at a level that was never meant to be. We surmise because this short-circuit 
requires not only adaptations by physiological process but molecular modifications, that some of the resulting 
CNS changes may be permanent. 
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stress reduction [12,14,26]. Much like moderate caf-
feine and alcohol use, potent addictive drugs activate 
brain reward systems directly. But this activation is 
much more intense, causing the individual to crave 
the substance and focus activities solely around drug 
ingestion [4,6]. Thus, the ability of addictive drugs to 
strongly activate CNS reward systems – and to chemi-
cally alter normal functions of these systems – is a cru-
cial feature of addiction [4,25,49,50].

The limbic system provides a neuroanatomical 
substrate for emotions and motivated behavior, includ-
ing stress response pathways and reward physiology 
[10,12,14,21,51]. Moreover, the extended amygdala 
contains parts of the nucleus accumbens and amyg-
dala, and it is imbedded in limbic activity [21,22]. Its 
location in the basal forebrain identifies the extended 
amygdala as an element of midbrain-basal forebrain 
neural reinforcement structures that participate in 
drug addiction and involve key neurotransmitters 
like dopamine, opioid peptides, serotonin, GABA and 
glutamate [15,22]. Hence, drug withdrawal is associ-
ated with negative affect and ‘dysregulation’ of reward 
pathways, i.e., functional neurotoxicity, possibly involv-
ing identical neurochemical processes and structures 
implicated in acute drug reinforcement, including 
the extended amygdala [22]. In addition, functional 
neurotoxicity may be accompanied by recruitment 
of stress response mechanisms, leading to continued 
dysfunctions in reward and stress physiology over time 
– i.e., chronic stress, affective disorders [10,39,40]. 
Persistent functional neurotoxicity, as potentially 
seen in chronic drug abuse, could be responsible for a 
long-lasting vulnerability to relapse [22]. It has been 
hypothesized that it may also lead to a change in set 
point for drug reward that may represent an allostatic 
state contributing to vulnerability to relapse and re-
entry into the addiction cycle [2,22]. Moreover, relapse 
vulnerability associated with functional neurotoxicity 
may be enhanced during acute and chronic stress [6]. 
The latter may be due to the fact that stress induces 
pleasure-seeking behavior, and during times of stress, 
the imaginable pleasure of initial drug use (and other 
positive cues related to drug consumption) is not for-
gotten. Stressful stimuli and/or exposure to low drug 
doses – as well as drug-associated cues – possibly trig-
ger craving, and further, they may send addicts directly 
back to relapse [15,16]. While pleasure, in general, is 
capable of reducing stress or inducing stress relieving 
behavior, this useful strategy may turn out to be det-
rimental and facilitate addiction in the end [6]. Again, 
we see the ‘double-edged sword’ behind pleasure (and 
addiction), i.e., two sides of one medal: pleasure may be 
a source of biologically beneficial motivational behav-
ior – at the possible expense of long-term consequences 
that may not serve health well.

With regard to neuropathophysiological mecha-
nisms supporting addiction, we find uniform signaling 
pathways and common CNS activities underlying dif-
ferent forms of drug abuse and different subjective ex-
periences. At the bottom, as described, lies limbic and 
reward system stimulation, including VTA, extended 

amygdala and prefrontal cortex activity. However, ad-
diction is a complex phenomenon. Immediately after 
drug ingestion, feelings of pleasure, euphoria, and rush 
predominate (the sublenticular extended amygdala 
and VTA are of particular importance here), followed 
by induction of craving with accentuated amygdalar 
and nucleus accumbens activity [15,16]. The craving 
grows as the euphoria wears off. Moreover, initial drug 
exposure triggers tolerance and, in the drug’s absence, 
discomfort that only more drug can cure [6]. Tolerance 
and dependence are related to a suppression of the 
brain’s reward circuitry that, ironically, is a key feature 
of frequent and continued drug abuse [6,15]. Thus, the 
reward system fails to give rewards in the end. The 
situation changes, however, when drug consumption 
is stopped for a longer period of time. But the neuro-
physiology then does not necessarily return to normal, 
since relapse vulnerability stays – and may even grow 
bigger. Ultimately, following a ‘successful’ withdrawal, 
drug sensitization may take over [15,16,52]. This 
secondary effect of drug consumption, i.e., addiction, 
is associated with a characteristic pattern of cellular 
gene and protein production:

CREB (cAMP response element-binding protein) is 
a nuclear transcription factor involved in the patho-
physiology of addiction (See Figure 4). When drugs 
are ingested, dopamine levels especially in the nucleus 
accumbens rise, stimulating dopamine-responsive 
cells to enhance cyclic AMP (cAMP) concentrations, 
thereby activating CREB [6,53,54]. CREB induces a 
specific gene expression, coding for proteins that, for 
example, suppress the reward circuitry (i.e., tolerance 
induction) [15,16,54]. One of these CREB-depen-
dent proteins is dynorphin – a natural molecule with 
opium-like effects that is synthesized in the nucleus 
accumbens and triggers a negative feedback loop, 
exerting inhibitory effects on VTA neurons [6,20,55]. 
The increase in dynorphin also facilitates dependence, 
since its reward suppression leaves one depressed and 
unable to take pleasure in previously enjoyable activi-
ties (in the drug’s absence) [6,55]. However, CREB is 
switched off only shortly after drug consumption has 
ended. Thus, this transcription factor may not be 
responsible for conditions that draw ‘former’ addicts 
back to substance abuse after years of abstinence. 
Such relapse is driven, for example, by drug sensitiza-
tion, a phenomenon that sets in when drug use stops 
and tolerance wanes [15,16,54]. Delta FosB, a tran-
scription factor that exerts its functions in response 
to chronic drug abuse, is released in the nucleus 
accumbens [54,55,56]. This stable protein remains 
active for months following drug ingestion, possibly 
controlling gene expression even after the cessation of 
drug taking [6,54]. Hence, delta FosB may cause drug 
addicts to become hypersensitive to drugs, leading to 
relapse even when only minimal doses of drugs are 
encountered [15,54,56]. Interestingly, it is also induced 
in response to repetitious non-drug rewards and may 
therefore represent a more general mechanism partici-
pating in reward-associated behavior change [6,15,16]. 
Sensitization – seen in a more positive connection 
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– could further point out the fact that certain rewards 
are especially wanted by an organism, including use-
ful (i.e., beneficial) and plainly pleasurable activities. 
Again, some CAM procedures may be mentioned in 
this context [14].

Taken together, reward circuitry alterations in the 
course of pleasure-seeking behavior and drug abuse 
potentially promote tolerance, dependence, craving, 
relapse and vulnerability [6,16,54]. However, pleasure 
is a substantial feature of drug consumption – but 
prolonged abuse facilitates tolerance and dependence. 
Due to CREB activity, sensitivity to the drug is reduced 
at first [6,54]. Yet, with more prolonged abstention, 
changes in delta FosB activity and glutamate signaling 
predominate [15,16,54–56]. These actions may trigger 
relapse by increasing sensitivity to the drug’s effects 
(if used again), eliciting powerful responses to memo-
ries of past highs and cues that bring those memories 
to mind [6,15,52].

Dopamine

Dopamine is a key player in pleasure and reward 
physiology. However, while progress in neurobiology 
rapidly unfolds, we can expect other neurotransmit-
ters to be added to this list, e.g., endocannabinoids 
[14,27,57]. Although substantial parts of the brain’s 
reward and motivation circuitry have already been 
discovered in the 1950’s, it took science over 20 years 
to apply this knowledge to the study of mechanisms 

involved in the rewarding aspects of substance abuse 
[58]. Within this context, opiate antagonists are ca-
pable of blocking the dopamine agonist activation of 
the CNS reward system [58]. Thus, dopamine and 
opiates/opioid peptides may be interconnected in the 
drug-pleasure-reward chain [58,59]. Yet, dopamine 
may represent a basic link of this chain.

The dopamine hypothesis, pointing out dopamine’s 
association with neurobiological mechanisms involved 
in addiction, pleasure and reward (including the pla-
cebo effect), has become very popular [14,53,60]. But 
still we don’t know all the precise CNS pathways of 
substances that cause pleasure. Different neuronal 
circuits may even overlap: The placebo circuitry, for 
instance, is coupled to consciousness, expectation, 
euphoria and gratification [53]. It may even involve 
physiological stress reduction and an activation of the 
relaxation response (the physiological counterpart of 
the stress response), and additionally, intrinsic placebo 
mechanisms may also be included in drug addiction 
[14,26,27,53,61]. The placebo effect, however, is com-
plex and it may not only be mediated by dopaminergic 
reward mechanisms in the brain (that are related to 
positive or pleasurable expectations).

Dopamine has received special attention from psy-
chopharmacologists, due to its obvious role in mood, 
affect and motivation regulation [4,20,53]. Although 
several distinct dopamine systems (i.e., receptors, 
receptor subtypes) exist in the brain, the mesolimbic 
appears to be the most important for motivational pro-
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Figure 4. Dopamine (DA) involvement with ventral tegmental area (VTA) in substance abuse (Modified from [6]; see text). 
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cesses [4,55]. Many drugs seem to exert their effects on 
behavior by stimulation of the mesolimbic dopamine 
activity [4,6,52]. Clearly, drugs of abuse cause the 
nucleus accumbens to receive a flood of dopamine 
(and sometimes dopamine-mimicking signals as well) 
[15,16]. Cells in the mesolimbic dopamine system, 
however, also show spontaneous activity – that is, ac-
tion potentials are constantly generated at a slow rate. 
The result is a steady (basal) release of small amounts 
of dopamine into the synaptic cleft, maintaining nor-
mal affective tone and mood [4,42,62]. Moreover, some 
forms of clinical depression may result from unusually 
low dopamine levels [4,10,63]. Low dopamine may 
further be associated with drug consumption, since 
repeated use of cocaine or morphine, for example, 
may deplete dopamine from the mesolimbic dopamine 
system and reward circuitry [4,6,15]. These dopamine 
depletions may be responsible for normal rewards to 
losing their motivational significance (i.e., tolerance 
induction, motivational toxicity). At the same time, 
the mesolimbic dopamine system becomes even more 
sensitive to activation by psychomotor stimulants and 
opiates. Consequently, sensitization develops (as illus-
trated). Counter intuitively, abstinence from cocaine 
or morphine after repeated administration may also 
decrease dopamine levels in the mesolimbic dopamine 
system/VTA [38,43]. This deteriorated dopamine func-
tion may be related to the intense craving associated 
with withdrawal in human drug addicts [4]. Taken 
together, initial or incidental drug use may enhance 
dopamine output and increase the resulting feelings 
of pleasure. Over time, however, this physiological 
reward function may collapse, causing dopamine 
concentrations to drop down and possibly leading to 
depression and other negative affective states.

Various addictive drugs share the common feature 
of stimulating the same dopaminergic brain reward 
system (for example, heroin enhances dopamine lev-
els by increasing dopamine release, whereas cocaine 
inhibits the dopamine reuptake), and this action has 
been related to their appetitive motivational effects 
[4,6,64]. Thus, appetitive rather than aversive motiva-
tion may induce drug-taking behavior and addiction 
[37]. Reward processes, based on dopaminergic signal-
ing, clearly exhibit a positive motivational potential 
and with that they may be useful for medical strategies 
focusing on behavior change, i.e., stress management 
and lifestyle modification programs (see below). In 
fact, reward mechanisms are implicated in placebo 
phenomena and CAM therapies, as well as in set-
tings that place emphasis on wellness and feelings of 
well-being [8,14,26,27,53]. However, individuals who 
actively ‘use’ their reward circuits for behavioral or 
motivational reasons are in constant danger of losing 
control over their behaviors (i.e., motivational toxic-
ity).

VTA neurons communicate with the nucleus 
accumbens by dispatching dopamine from the termi-
nals of their long projections to receptors on nucleus 
accumbens neurons [15,16]. This dopamine pathway 
from VTA to nucleus accumbens appears to be a 

critical component of the reward physiology, includ-
ing pleasure and addiction: in animals with lesions in 
these regions, a loss of interest in drug consumption 
has been observed [6,52]. Moreover, cocaine and other 
stimulants temporarily disable the return of dopamine 
to the VTA neuron terminals and opiates, in addition, 
bind to inhibitory neurons in the VTA that usually 
shut-down the dopamine production (thereby allowing 
dopamine-secreting cells to release dopamine). Both 
strategies finally support excess dopamine to act on 
the nucleus accumbens [15,16]. Opiates may further 
generate a strong ‘reward message’ by acting directly 
on the nucleus accumbens [6,59]. Again, we find the 
complexity that rules dopaminergic reward processes.

Other monoamines (as well as acetylcholine, en-
dorphins etc.) may also participate in these processes 
[8,14,65]. With regard to neuroanatomy, particular 
attention may be paid to dopaminergic neurons of 
the ventral tegmentum that project to the nucleus 
accumbens, amygdala, prefrontal cortex and other 
forebrain structures (as described above). Other 
regions like the hippocampus and additional limbic 
areas may also be of interest. All these parts of the 
brain’s reward circuitry seem to communicate back 
and forth with VTA and nucleus accumbens, thereby 
frequently involving glutamate signaling [6]. When 
drugs of abuse increase dopamine release from the 
VTA into the nucleus accumbens, they further alter 
the responsiveness to glutamate [6,15,16]. Changes 
in sensitivity to glutamate may then enhance both 
the release of dopamine from the VTA and responsive-
ness to dopamine in the nucleus accumbens, thereby 
promoting CREB and delta FosB activity (see above). 
Furthermore, it seems that this altered glutamate sen-
sitivity strengthens the neuronal pathways that link 
memories of drug consumption and related cues with 
high reward, thus feeding the desire to seek the drug, 
i.e., vicious circle [15,16,52]. Finally, drugs of abuse ob-
viously influence the shuttling of glutamate receptors 
in the reward pathway [6].

Taken together, pleasure phenomena critically in-
volve dopaminergic signaling. This dopamine-associ-
ated reward physiology may also play a role in the pla-
cebo effect and related mechanisms. It may therefore 
be useful in various health care settings and medical 
procedures. Placebos may even be helpful in long-term 
substitution programs for the treatment of drug addic-
tion, since they are able to induce dopamine release in 
the brain – which is a key element of drug addiction 
as well [53]. However, endorphins and other signal-
ing molecules have to be taken into consideration too. 
Pleasure and addiction may exhibit common path-
ways: Substances of abuse – such as nicotine – may in-
crease CNS dopamine levels, thereby improving mood 
and affect (or compensating for chronically lowered 
dopamine concentrations as seen, for example, in sev-
eral affective disorders) [10,63]. This potentially plea-
sure-inducing capacity of drug consumption may be 
accompanied by the development of drug dependence. 
Thus, the neurochemical mechanisms and physiologi-
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cal consequences underlying pleasure and addiction 
are complex and ambiguous.

Belief, cognition and social support

It has been suggested that the placebo effect is 
basically mediated by dopaminergic – and possibly 
morphinergic – reward mechanisms and that this 
placebo-related reward physiology is associated with 
positive therapy expectations, i.e., expected clinical 
benefits [14,53]. Hence, placebo effects may involve 
anticipatory pleasure and positive motivation. The 
placebo response relies on trust and belief, and this 
connection has its neurobiological roots predomi-
nantly in limbic and frontal/prefrontal brain activity 
[53,66,67,68]. Furthermore, pleasure is a subjective 
quality of experiences that involve reward circuitry 
stimulation and a specific pattern of CNS activity, in-
cluding dopamine signaling (see above). Studies on the 
neurobiological processes underlying pleasure, reward 
and addiction have focused on limbic, frontal and pre-
frontal CNS activity [14,24]. However, brainstem and 
basal ganglia (e.g., striatum and pallidum) may also be 
important [23,24,69]. Lesions in the ventral pallidum, 
for example, can impair normal sensory pleasure [23]. 
The basal ganglia are normally in control of inhibitory 
GABAergic and dopaminergic neurons that seem to 
communicate with the reward system [23,69]. Thus, 
the brain’s reward and motivation circuits include dif-
ferent CNS regions that may serve various separate 
functions but overlap in their reward signaling path-
ways. Almost all of these structures and mechanisms 
obviously exhibit some form of an association with cog-
nitive functions, trust or belief [8,14,24]. With regard 
to addiction, which represents a possible dangerous 
outcome of pleasure-seeking behavior, these regions 
are also involved in more complex cognitive and moti-
vational functions, such as the ability to track, update 
and modulate the salience of a reinforcer as a function 
of context or expectation and the ability to control or 
inhibit prepotent responses and behavior [24].

Belief has an emotional component in that the 
brain’s motivation and reward circuitry – linked to 
limbic system and emotional memory – will be re-
inforced with a positive emotional valence attached 
to the believed in person, idea, or thing [8,14]. This 
emotionalized memory, potentially accompanied by 
‘somatic markers’ (e.g., pleasant bodily sensations 
that may escort an emotion), sets the ‘feeling tone’, 
i.e., it strongly influences what ‘feels right’ to a person 
[8]. Furthermore, pleasure and emotion may reinforce 
a belief and trigger positive physiological reactions 
even against rationality [70]. Thus, belief in a doctor 
or therapy may stimulate naturally occurring health 
processes [14]. These subjective ‘self-healing’ pro-
cesses may particularly involve limbic structures (i.e., 
‘remembered wellness’), and they may be based on en-
dogenous signaling molecules like morphine [8,14,27]. 
Taken together, the subjective modulation of incoming 
information in the brain – e.g., following prior stimu-
lation of the sensory organs – may be an important fac-

tor in pleasure and placebo phenomena likewise. This 
may particularly be true when positive qualities or 
experiences like pleasant sensations, touch, attention, 
feelings of well-being or protection are involved [14].

Pleasurable experiences are effectively capable of 
improving concentration and cognitive function, e.g., 
memory [14,26,71]. This may be due to hippocampal/
limbic activation, including reward circuitry stimula-
tion [8]. Again, positive emotions – linked to rewarding 
stimuli – may reinforce this process. Clearly, pleasur-
able experiences and feelings are interconnected, and 
the emotion it imparts can be viewed as a process of re-
inforcing a positive belief so that rational thought can 
not hinder the strength of the belief [72]. Thus, plea-
sure is a powerful tool to elicit an emotional response 
(i.e., limbic activation) and fulfil expectations without 
the use of rational information processing [14]. Social 
interaction, for example, can be a source of such pleas-
ant feelings and sensations. The possible pleasure of 
touch, attention, closeness or protectedness as well 
as sexual stimulation or communication – all these 
activities and conditions may improve cognitive, mo-
tivational or emotional functions, and they may even 
effectively reduce stress [26,73–75]. Thus, pleasure 
may reinforce trust and belief, thereby improving 
cognition, well-being and health. Social support may 
facilitate this process, which potentially is also induc-
ible by placebo or CAM therapies [14,26,76,77].

Health implications

We have learned that pleasure, in general, can be 
healthy experience. Now we want to take a closer 
look at this obvious association between pleasure 
and health. Procedures that particularly focus on the 
healthy aspects of pleasant activities – and that could 
therefore serve medicine and health care [1,14,26] 
– may consist of classical medical treatments, comple-
mentary approaches or psychological interventions, 
i.e., ‘positive psychology’. Thereby, positive psychol-
ogy is putting emphasis primarily on the existence 
of health-promoting and -protecting factors in each 
individual, that is, salutogenic or resistance resources 
[2,26,76–80]. These resources like personality hardi-
ness, exercise, social support, sense of coherence etc. 
may enhance feelings of comprehensibility, manage-
ability, meaningfulness, control, closeness and com-
mitment in life and in stressful situations [76,77,79]. 
Besides effectively reducing stress, the fact that life is 
principally seen as a challenge and a positive – that is, 
enjoyable, rewarding or pleasurable – event may itself 
shape well-being and health [76–78,80]. People with 
high salutogenic qualities believe in their strengths, 
expect the positive and find meaning in almost every-
thing they encounter [73–75]. Further, these saluto-
genic factors generally serve a positive and productive 
motivation and may scare away feelings of depression 
or helplessness, even when a realistic (and possibly 
overwhelming) threat occurred [76,78,80]. They may 
not always prevail. Salutogenic resources and pleasur-
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able experiences, however, can facilitate an optimistic 
and ‘humorous’ attitude towards life (see below).

The field of positive psychology is about valued sub-
jective experiences: pleasure, well-being, contentment 
or satisfaction in the past, hope and optimism for the 
future and flow or happiness in the present [81]. At the 
individual level, it is about positive individual traits 
(such as the capacity for love and vocation, courage, 
interpersonal skill, aesthetic sensibility, perseverance, 
forgiveness, originality, future mindedness, spiritu-
ality, talent and wisdom), and at the group level, it 
is about civic virtues and conditions that promote 
responsibility, nurturance, altruism, civility, modera-
tion, tolerance and work ethic [81]. Researchers in the 
field of preventive medicine have discovered that these 
traits and factors represent human strengths that buf-
fer against stress and illness [2,26,76–81]. Optimism, 
the ability to enjoy pleasurable events, honesty, faith 
or the capacity for flow and insight may also be named 
here [12,81]. Today’s medicine has learned the impor-
tance of fostering these attitudes and virtues for pre-
ventive reasons [1]. Practitioners need to accept that 
much of the valuable work they do is to generally am-
plify strengths rather than repair broken parts [81]. 
Hence, the new paradigm has brought the science and 
usefulness of pleasure, reward, human strengths and 
resilience to light. Individuals are now seen as decision 
makers with choices, preferences and the possibility 
of becoming masterful and efficacious – or, in adverse 
circumstances, help- and hopeless [82,83]. A suitable 
side effect of positive psychology, however, may be that 
normal people grow stronger and get more productive 
[81].

What is the difference between being optimistic 
or enjoying pleasurable experiences on one hand and 
being realistic on the other? Is it possible to be both, 
optimistic and realistic, at the same time? Indeed, 
researchers in the field of positive psychology suggest 
that someone can still be happy or aspire to an overall 
optimistic attitude while confronting life realistically 
– and working productively to improve health or the 
conditions of existence [81]. In fact, pleasure may be 
the key feature that keeps ‘positive minded’ people 
doing so. We have learned, however, that these people 
could also acquire an elevated risk of becoming ad-
dicted to pleasurable activities and stimulants (see 
above).

Mihaly Csikszentmihalyi has observed increased 
quality of life when work and leisure engage one’s 
skills. Between the anxiety of being overwhelmed 
or stressed and the apathy of being underwhelmed 
or bored lies a zone in which people experience flow 
[84,85]. This mind-state appears to be extremely 
pleasurable and productive, since people are kept in 
the moment, absorbed by their current activities, 
showing a beneficial physiology – and just feeling well 
[12,14,26,84,86]. Thereby, the state of flow resembles 
the relaxation response described earlier, possibly in-
volving brain’s reward pathways and limbic activity 
[12,14,26]. However, human beings can be proactive 
and engaged or, alternatively, passive and alienated, 

largely depending on the social conditions in which 
they develop and function [87]. Accordingly, positive 
psychology research focuses on factors that promote 
natural processes of self-motivation and healthy 
psychological development [87]. Conditions are thus 
under examination that facilitate intrinsic motivation, 
self-regulation and well-being. Hence, joy and pleasure 
can be interpreted as such potentially self-applicable 
factors, providing internal (versus external) control 
and self-esteem. Moreover, the innate needs of happi-
ness, competence, autonomy and relatedness – when 
satisfied – may yield enhanced self-motivation and 
health [14,87].

Motivation concerns aspects of activation or inten-
tion. Consequently, it lies at the core of biological, cog-
nitive and social regulation [87]. Motivation is highly 
valued in health care, because it produces behavioral 
changes or adjustments and can mobilize others to 
act [87]. When motivation occurs in conjunction with 
optimism, its health-supporting abilities could even 
be stronger. Furthermore, psychological beliefs such 
as optimism, personal control and a sense of meaning 
are well-known for their health-protecting capacities 
[61,88]. It seems now that optimism may facilitate 
health and prevention even when ‘unrealistically opti-
mistic’ beliefs about the future – i.e., positive illusions 
(delusions?) – are involved [88]. The ability to find 
meaning in the present experience may also be associ-
ated with a less rapid course of illnesses [88]. Taken to-
gether, psychological beliefs such as meaning, control 
and optimism act as salutogenic factors, regardless 
of the ‘appropriateness’ of their occurrence. Positive 
illusions (or maybe even denial) on one hand or a fight-
ing spirit on the other – when people generally stay 
optimistic and full of hope, thinking they’ll overcome 
a threat and enjoying pleasurable experiences that still 
exist for them, they potentially display better health 
parameters and outcomes compared to pessimistic 
people [84,87,88]. Additionally, motivation, joy and 
optimism may characterize individuals high in resis-
tance resources and quality of life. The ability to enjoy 
pleasurable experiences – and thereby activate brain’s 
reward and motivation pathways – may serve health 
and can thus be recommended even in life threatening 
situations [14,26,88].

Complementary medical treatments and approaches 
can elicit pleasurable experiences or sensations [14]. 
Clearly, CAM possesses health-promoting capacities 
[14,26]. CAM may, in addition, induce feelings of flow, 
relaxation and well-being, thereby probably involving 
the CNS reward circuitry [8,12,14,26,27]. Optimism, 
belief and motivation play a critical role in CAM ther-
apy [8,14]. Hence, pleasurable CAM effects resemble 
the placebo response – with particular reference to the 
non-specific parts of the CAM physiology [14]. How-
ever, pleasure holds beneficial and detrimental abilities 
likewise (as described). It may trigger flexibility, posi-
tive motivation, optimism or healthy behaviors and 
yet still has addiction and motivational toxicity on its 
template. This can be a question of dose: moderately 
pleasant experiences, particularly when mediated via 
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regular stimulation of the sensory organs, may be 
helpful for the induction of behavior change (e.g., life-
style modification or stress management programs), 
since it involves positive or appetitive motivation, 
potentially facilitating biologically beneficial motiva-
tional behavior (see above). However, the pleasurable 
aspect of CAM can also be found, counter intuitively, 
in more stressful and competitive situations, such as 
the work environment. Gratification (i.e., reward) 
is a stress buffer and possible source of health, plea-
sure and happiness. Gratification in association with 
work (money, esteem, job security, career chances) 
leads to comparable positive results, that is, it elicits 
the same beneficial response [61,81,89]. In terms of 
neurobiology, work-related gratification potentially 
relies on the same uniform stimulation of CNS reward 
pathways already illustrated. Therefore, regardless 
of the original source of gratification, experiencing 
pleasure or engaging in joyful activities can activate 
areas in the brain responsible for emotion, attention, 
motivation and memory (i.e., limbic structures), and 
it may further serve to control the autonomic nervous 
system [27,90,91]. This specific CNS activity pattern 
appears to exert protective effects, even on the brain 
itself [14,26]. Moreover, anxiolytic effects of pleasur-
able experiences may occur by promotion of an inhibi-
tory (GABAergic) tone in specific areas of the brain 
[92]. In this regard, methionine enkephalin signaling 
brings with it antibiotic activity (see Figure 1). Thus, 
pleasure clearly is capable of stimulating health, well-
being and productivity.

Pleasure seems to possess a coordinating influence 
on a network of cortical and subcortical limbic and 
paralimbic structures, regions that are intimately 
involved in the regulation of cognition, emotion and 
autonomic, endocrine or vegetative functions [14]. 
Modulation of this neuronal network could initiate 
a sequence of effects by which pleasurable activi-
ties regulate multisystem functions [14]. Meditation 
– given as an example for a CAM technique that poten-
tially induces pleasurable sensations and feelings of 
well-being (thereby involving the relaxation response) 
[26] – has been shown to increase left-sided anterior 
activation of the brain, a pattern that is associated 
with positive affect [93]. Again, positive emotion-re-
lated brain activity is a substantial part of the CNS 
reward circuitry, and the frontal regions of the brain 
not only are involved in relaxation response pathways, 
but clearly exhibit a specialization for the processing 
of emotions as well [11]. Davidson et al. recently sug-
gested that left-sided anterior activation is associated 
with more adaptive responding to negative and/or 
stressful events [93,94]. Specifically, individuals with 
greater left-sided anterior activation have been found 
to show faster recovery after negative provocation 
[94]. The two brain hemispheres may thus not act 
symmetrically in pleasure phenomena, underlining 
the complexity of the reward and motivation physiol-
ogy. For example, when teenagers listen to pleasurable 
music of their choice, parts of the frontal and temporal 
lobe in the left hemisphere get activated [95,96]. In 

contrast, when they listen to music they obviously 
dislike, the same areas on the other side (i.e., right 
brain) are active. Further, deeper CNS structures 
get involved: pleasurable music not only stimulates 
the temporal and frontal (left-anterior) brain, but 
also activates parts of the limbic system like the 
cingulate gyrus [95]. Dissonant or unpleasant music, 
however, activates right parahippocampus and amyg-
dala (related to fear and anxiety). As described above, 
dopamine, GABA, glutamate and other neurochemi-
cals such as serotonin and endorphins (and even the 
stress hormones) may be important for this particular 
brain activity pattern found in pleasant/unpleasant 
experiences. Interestingly, in people listening to their 
preferred music they exhibited lower blood pressures 
accompanied by changes in peripheral opiate signaling 
[97,98]. This finding may actually mirror changes in 
chemical messenger functions in the brain, i.e., limbic 
via morphine [99,100,101].

Taken together, pleasurable experiences can be a 
source of health protection and promotion, but still 
carry the risk of addiction and other negative out-
comes within. This potential for addiction may be 
directly related to endogenous morphine signaling. 
Moreover, the underlying physiology is complex and 
has to be studied further.

Discussion

Pleasure clearly is an important neurobiological 
phenomenon. Research usually sees pleasure as an 
enjoyable experience, i.e., a feeling that results from 
joyful activities (as described). However, pleasure is 
much more complex and we should take a closer look. 
Some researchers think that it might be helpful to 
distinguish positive experiences that are pleasurable 
from those that are enjoyable [81]. Following this 
discussion, pleasure can be seen as the good feeling 
that comes from satisfying homeostatic needs such 
as hunger, sex and bodily comfort, whereas enjoyment 
may refer to the good feelings people experience when 
they break through the limits of homeostasis – when 
they do something that stretches them beyond their 
current existence [81]. Hence, enjoyment rather than 
pleasure may lead to personal growth and develop-
ment, yet providing good feelings or long-term hap-
piness, i.e., ‘fun’ [81]. However, this is a speculative 
aspect and it’s still imaginable that, with reference to 
neurobiology or underlying molecular mechanisms, 
both phenomena are identical. Interestingly, when 
given a chance, most people choose pleasure instead 
of enjoyment, that is, they choose to watch television 
over reading a challenging book, even when they know 
that their usual hedonic state during television is mild 
dysphoria, whereas the book can, for example, produce 
flow [81]. Thus, pleasure or pleasant experiences (or 
enjoyment) not only serve entertainment, but can also 
alter motivation, behavior and personal growth.

The brain’s reward and motivation circuitry with 
its limbic components represents the crucial neurobio-
logical system underlying pleasure phenomena. It not 
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only serves pleasure and motivation, but also involves 
aspects of behavior, reproduction and sexual activity, 
emotion, belief and trust, memory, cognition, stress 
physiology and autonomic functions, relaxation and 
well-being – to name a few [8,10,14,26,96]. The reward 
physiology is complex. Thereby, the limbic system in 
general seems to play an important role, but some 
specific CNS regions involved in the pleasure physiol-
ogy have also been identified. As described above, the 
VTA and nucleus accumbens, together with amygdala 
(i.e., extended amygdala) and other frontal/prefrontal 
or mesolimbic structures like the medial forebrain 
bundle can be mentioned here. Neurotransmitters 
potentially acting on these structures are, for example, 
dopamine, GABA, glutamate, serotonin, acetylcholine, 
morphine, nitric oxide, noradrenaline, cortisol as well 
as endocannabinoids.

Complementary medical procedures can induce 
pleasure. Sensations that accompany CAM therapy 
(e.g., via direct stimulation of the sensory organs) may 
activate limbic or other areas of the brain related to 
the reward and motivation circuitry. Secondary physi-
ological changes and bodily reactions may follow, i.e., 
autoregulatory mind/body reactions [14]. Music, for 
example, can produce happiness, since it also influ-
ences limbic and reward pathways responsible for feel-
ings of pleasure and happiness [12]. Pleasant music 
can thus stimulate the same CNS reward and motiva-
tion processes that get involved in eating, drinking, sex 
or drug consumption, thereby reducing anxiety and 
depression [12,14,86]. Music therapy, seen as an ex-
ample for a common CAM-associated intervention, can 
be a healthy – or healing – experience [86]. However, 
we realize how potentially close pleasure and addiction 
are bound together. The question is: What is the cru-
cial difference between good or bad (i.e., ameliorating 
or detrimental) pleasure phenomena and outcomes of 
pleasurable activities?

Much of behavior can be explained by simple pro-
cesses of approaching pleasant and avoiding painful 
stimuli [102]. Normally, appetitive motivation relies 
on physiological reward processes that are capable of 
governing normal behavior and are most often associ-
ated with goals that have benefited the species (or the 
organism) from an evolutionary biology perspective 
[4]. This can’t be bad. However, we have to distinguish 
normal from abnormal behavior and artificial from 
natural rewards. Also, we must examine the type of 
influence on the CNS pathways that rewarding stimu-
lants exert and the dose/quantity of a pleasant experi-
ence or activity.

Natural rewards can be modulated by the activ-
ity of the brain’s reward and motivation circuitry. 
Feeding, sexual activity or maternal behavior can 
be facilitated each by opiate activation of the reward 
system [25,49,59]. The origin of the VTA (i.e., ventral 
tegmental dopamine system) seems to provide an 
important neurochemical interface where exogenous 
opiates and endogenous opioid peptides can activate a 
CNS mechanism involved in appetitive motivation and 
reward [4,14]. Obviously, endogenous morphinergic 

signaling may also play a role [4]. This is especially 
true since endogenous morphine biosynthesis may 
involve elements of dopamine metabolism [103,104], 
linking two critical signaling systems. Additionally, 
endogenous morphine has been found in hippocampal 
tissues [99,100] and morphinergic signaling has been 
demonstrated to release constitutive nitric oxide here 
[101], linking morphine to limbic structures and nitric 
oxide effects. Thus, the VTA serves as a appetitive mo-
tivation system for diverse behaviors, since it controls 
both normal and pathological behaviors [4,14,20,42]. 
However, artificial rewards and drugs – in contrast 
to natural stimuli that work, for example, by moder-
ate sensory organ stimulation – are capable of acting 
directly on VTA and nucleus accumbens pathways, 
allowing only little flexibility and modulation to in-
terfere (see above). Consequently, artificial rewards 
can diminish self-control and beneficial motivational 
behavior, leading to a potentially dangerous or detri-
mental outcome, i.e., motivational toxicity [4]. They 
may therefore be considered biologically senseless. 
Nonetheless, artificial and natural rewards can not al-
ways be differentiated easily. The difference, however, 
could be a question of dose.

One can imagine that the effects of strongly and di-
rectly rewarding substances that are ingested in high 
concentrations and immediately induce ‘pleasure’ are 
different from moderate but still pleasant experiences 
that do not reach comparable concentrations or show 
a more pulsatile physiology. Natural rewards may not 
boost such a flood of neurochemicals and stimulating 
signaling molecules or they may not completely sur-
pass normal physiology. However, the distinction can 
also be made by the build-up of appetence: natural re-
wards, i.e., pleasurable experiences like eating or sex, 
usually depend on a preceding build-up of appetence 
(e.g., hunger) to fully develop their pleasure potential 
[17,69,105]. Following the pleasurable experience, ap-
petence decreases and then needs a certain time span 
to newly reach its former levels and intensity. During 
this time, the same ‘appetizing’ experience can even 
induce aversion [17]. Addictive drugs, in contrast, 
immediately build up high appetence levels that are 
not released completely or only for a short time after 
drug consumption [15,16,52]. This frustrating fact 
produces even more appetence: one can not stop the 
pleasure-seeking activity that now starts to take con-
trol over normal behaviors (i.e., motivational toxicity). 
Without experiencing a break, a restless vicious circle 
has been initiated, forcing to seek for the one and only 
motivational goal and anticipated relief (see above). 
Flexibility, variability, biological complexity and per-
sonal growth or freedoms have been sold for addic-
tion. Taken together, natural rewarding activities and 
artificial chemical rewarding stimuli act at the same 
locations, but while natural activities are controlled by 
feedback mechanisms that activate aversive centers 
(i.e., aversive motivation), no such restrictions bind 
the responses to artificial stimuli [4,65]. Moreover, re-
ward substrates that directly act on the brain’s reward 
pathways are more potent than other rewards, such as 
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food or water: subjects prefer to choose self-imposed 
starvation when forced to make a choice between 
obtaining food and water or direct electrical stimula-
tion of the reward circuitry [106]. However, another 
distinguishing feature between normal pleasure and 
addiction, as described, is the lack of satiation. These 
two features (super-potent reward and lack of satia-
tion) are important characteristics of direct activation 
of the CNS reward pathways [4]. We can assume that 
nature has not made preparation, that is, has not 
planned for this artificial short-cut to occur.

The hypothesized activation of the ventral tegmen-
tal reward system by endogenous opioid peptides or 
opiates can offer an explanation of seemingly para-
doxical behavior: the voluntary self-infliction of stress 
or pain [4,8,14]. Events normally considered stressful 
and thus aversive may activate the CNS reward sys-
tem through the release of chemical messengers, i.e., 
morphine, induced by the stressor [4,8,14,27]. This 
could explain the attraction some individuals display 
to seemingly aversive stimulation (e.g., risk-taking 
behavior or self-infliction of painful stimuli). In some 
situations, the appetitive motivational effect of these 
behaviors may override the normal aversive effect 
that usually induces withdrawal behavior [4]. Con-
sequently, in certain conditions, approach behavior 
indicative of appetitive motivation may be produced 
by an aversive stimulus normally avoided. This is 
most likely perhaps in situations where the effects of 
the stress-associated endorphin release out-last the 
abrupt termination of the painful or aversive stimulus 
[4]. Also, cognitive processes could label the stressor 
as non-threatening, thus permitting the pleasurable 
effects to dominate affective tone. Finally, the aspect 
of challenge involved in risk-taking behaviors, for 
instance, could represent the ‘enjoyment’ component 
related to rewarding activities (as described earlier), 
possibly leading to personal growth and development. 
Taken together, avoidance and approach are con-
nected with stress physiology and ‘pleasure response’, 
thereby potentially including stress-associated endor-
phin signaling.

Music has been shown to possess the ability to 
decrease stress hormone levels in stressful (challeng-
ing) situations and alter endogenous plasma opiate 
alkaloid levels, eventually facilitating relaxation and 
feelings of well-being [12,107,72,98]. Hence, pleas-
ant music can be used as an effective calming and 
stress-reducing intervention, therefore involving lim-
bic pathways, i.e., autonomic-emotional integration 
system [12,72,86]. Moreover, nitric oxide and opiate 
autoregulatory signaling have been demonstrated or 
discussed in association with further CAM therapies 
(e.g., acupuncture, relaxation response techniques, 
massage therapy) [8,14,26,27,108–114]. These mol-
ecules that possess a strong CNS affinity and are 
capable of reducing stress may also be involved in the 
placebo or pleasure response, promoting positive CAM 
effects [2,14,26,27,53,66,67,113–124]. Recent informa-
tion suggests that morphinergic signaling is a part of 
this hypothesis. Endogenous morphine has been found 

in various neural tissues as well as in limbic structures 
[14,57,125–133,104]. Morphine has been found in 
hippocampus [99,132,100] and when added to rat hip-
pocampus stimulates nitric oxide release, demonstrat-
ing a mu3-like effect [101]. The opiate mu receptor 
subtype, designated mu3, has been cloned, is opiate 
alkaloid selective and opioid peptide insensitive [134], 
strongly supporting the hypothesis of an endogenous 
morphinergic signaling system. Additionally, these 
reports demonstrate the presence of morphine precur-
sors in various mammalian tissues, including brain. 
The psychiatric implications of this system have been 
examined as well, including brain reward circuitry 
[14,121]. Thus, morphine, given its reported effects 
and those exerted via stimulation of constitutive nitric 
oxide release, may form the foundation of the common 
signaling in CAM and pleasure phenomena. Indeed, 
morphine may additionally represent signaling that 
allows one to make rationale short cuts, since being ra-
tionale, from time to time, can be too time consuming 
– i.e., emotional appetitive motivation [135].

Belief and expectation are, by nature, important 
ingredients of the placebo response. Placebo ef-
fects, however, may involve morphinergic signaling 
[14,136,137]. Neurons immunoreactive for morphine 
are largely present all along the extension of the peri-
aqueductal grey matter, in brainstem raphe nuclei 
and cortex [14,127], implicating morphinergic neural 
pathways in the placebo response. Additionally, the 
prefrontal cortex (particularly the dorsolateral aspect) 
has been shown to be involved in the representation of 
cognitive control, goal determination and expectation 
– and thus plays a crucial role in the placebo response 
as well [14,136]. Moreover, the prefrontal cortex pos-
sesses close neural connections to limbic components, 
such as the hippocampal formation and cingulate cor-
tex, where morphine immunoreactivity is largely pres-
ent in neurons and fibres [14,131]. These areas play 
a major role in memory, motivation as well as in plea-
sure or reward processes (see above). Furthermore, 
endogenous morphine appears to modulate memory 
– thereby, for example, weakening the memory of a no-
ciceptive or aversive experience [138]. Taken together, 
limbic areas are connected to the frontal/prefrontal 
cortex, which integrates emotion, memory, belief, 
expectation, motivation and reward processing, i.e., 
affective and motivational responses [8,139]. Also, 
prefrontal mechanisms may trigger opiate release 
in the midbrain [136]. Thus, the endogenous opiate 
aspect of pleasure phenomena seems to be crucial but 
needs more attention and thorough research to be 
conducted. This may be of particular importance for 
health implications in association with pleasurable ex-
periences, since these can promote flexibility and self-
control, possibly decreasing motivational toxicity (as 
seen in drug addiction), hence serving as a therapeutic 
tool. However, the duration and dose of pleasure or re-
ward – that is, reward circuitry stimulation – appears 
to be they key element of interest.
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Conclusions

Pleasure can serve health, but is also capable of pro-
moting addiction and other dangerous outcomes or be-
haviors (i.e., motivational toxicity). It is a complex neu-
robiological phenomenon, relying on reward circuitry 
activity and limbic processes. These CNS processes 
can involve dopaminergic signaling. Moreover, opioid 
peptides and endogenous morphinergic mechanisms 
play a role as well. Natural rewarding or pleasurable 
activities are necessary for survival and appetitive mo-
tivation, usually governing beneficial biological behav-
iors like eating, sex and reproduction. Thus, pleasure 
is much needed. However, artificial stimulants (e.g., 
addictive drugs) or ‘too much’ of a pleasurable activity 
may not be as beneficial, since flexibility and natural 
control of behaviors may be deteriorated. Clearly, ad-
diction includes a loss of control over normal behaviors 
and appetitive motivational goals. Addictive drugs, in 
addition, are capable of directly and strongly acting 
on reward pathways, thereby influencing motivation 
physiology.

Moderate pleasurable experiences, nonetheless, are 
able to enhance biological flexibility, complexity and 
health protection. Thus, pleasure can be a resistance 
resource, or it may serve salutogenesis and prevention. 
Natural rewards are regularly mediated by sensory 
organ stimulation, thereby exhibiting a potential asso-
ciation with complementary medical approaches. The 
existence of subjective CNS phenomena like feelings of 
pleasure, joy and happiness and their commonalities 
with CAM mechanisms may emphasize the signifi-
cance of naturally occurring health processes and gen-
eral self-care capabilities. Trust and belief may be part 
of this self-healing potential. Further, the placebo re-
sponse physiologically resembles pleasure phenomena, 
since both involve the brain’s reward and motivation 
circuitry stimulation and subjective feelings of well-
being. Again, morphinergic autoregulatory signaling 
may be involved.

Pleasure facilitates limbic thrust of belief and trust 
into the body’s equation for restoring or maintaining 
health. Thereby, pleasure promotes a healthy state of 
dynamic balance. In humans, cognition and belief (e.g., 
in love and trust) are vital for reward and pleasure 
experiences. Social contacts, in addition, provide plea-
sure, hence survival. These functions of pleasurable 
experiences may even stimulate personal growth and 
development. Furthermore, they can serve to induce 
healthy behavioral changes and lifestyle modifications, 
including stress reduction or stress management pro-
grams. However, there is a lot more of research to be 
done to better understand the nature, neurobiology 
and maybe dangerous side of pleasure. Also, the in-
volvement of endogenous morphinergic processes 
has to be studied further. When this has been done, 
however, one can imagine pleasurable activities, enjoy-
ment and CAM to become part of future therapeutic 
strategies in regular medicine.
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