Problems and possibilities in the differential diagnosis of Syndrome Spinocerebellar Ataxia

Alena Zumrová

2nd Medical Faculty Neurogenetic Centre, Motol Medical Hospital, Prague, CZECH REPUBLIC

Alena Zumrová, M.D.
Department of Child Neurology
2 nd Medical Faculty and Motol Medical Hospital
V úvalu 84, 150 00 Prague, CZECH REPUBLIC
TEL.: +420 737857068; FAX: +420 224433322
EMAIL: alena.zumrova@lfmotol.cuni.cz

Submitted: March 30, 2005 Accepted: April 3, 2005

Key words: differential diagnosis; neurogenetic disorders; neurometabolic disorders spinocerebellar ataxias; repeats

Neuroendocrinol Lett 2005; 26(2):98–108 PMID: 15855879 NEL260205R02 © Neuroendocrinology Letters www.nel.edu

MOTTO: NULLA REGULA SINE EXCEPTIONE

Abstract Differential diagnosis in neurologic patients with spinocerebellar syndrome is complex as a result of the great degree of variability in phenotypic and genetic aspects of more than 200 nosological entities. In the past decade, genetic etiology has been discovered in part of the diseases and the term "spinocerebellar ataxia" has become, from a neurologic point of view, a loose definition applied to a group of autosomal dominant diseases. Topical extensive literature about differential diagnoses of ataxias usually refers to genetics classification or is produced by a group of radiologists, elektrophysiologists and biologists as well as others in the field. A further problem is that the majority of studies do not take into account other acquired illnesses and diseases which may fundamentally alter the symptomology and course of a primary disease, not to mention the possibility of concomitancy in hereditary diseases. The following article was prompted by daily contact with ataxic patients and related issues raised by colleagues; its goal is to clarify problems faced by child neurologists and neurologists in clinical practice.

Abbrev i AD ADCA	a tion and units: – Autosomal dominant – Autosomal dominant cerebellar ataxia	EOCA ENG FRDA	 Early-onset cerebellar ataxia with retained reflexes Electro-nystagmography Friedreich's ataxia
ALS	– Amyotrophic lateral sclerosis	FXTAS	– Fragile X Premutation Tremor/Ataxia Syndrome
AR	– Autosomal recessive	HAM	– Hearing loss, Ataxia, Myoclonus (epilepsia
AT	– Ataxia teleangiectasia		partialis continua)
AVED	– Ataxia with Vitamin E Deficiency	HSAN	– Hereditary sensory autonomic neuropathy
BAEP	– Brain auditory evoked potential	HSMN	- Hereditary sensory motoric neuropathy
CAG	 Cytosine Adenine Guanine 	IOSCA	 Infantile-onset cerebellar ataxia
CNS	– Central nervous system	L	– Lumbar
CT	– Computer Tomography	LDL	 Low-density lipoprotein cholesterol
CTG	– Cytosine Thymine Guanine	MELAS	 Mitochondrial Encephalomyopathy, Lactic
Cu	– Copper		Acidosis, Stroke like episodes
DNA	– Deoxyribonucleic acid	MEP	 Motor evoked potentials
DRPLA	 Dentatorubropallidoluysian atrophy 	MERRF	– Myoclonic Epilepsy, Ragged Red Fibers
ECG	– Electrocardiogram	MRI	– Magnetic Resonance Imaging
EEG	– Electroencephalogram	NARP	– Neuropathy, Ataxia, Retinitis Pigmentosa
EMG	– Electromyography	NCL	 Neuronal ceroid lipofuscinosis
EOG	– Electro-oculography	PANK 2	– Pantothenate kinase 2

S	– Sacral
SCA	– Spinocerebellar ataxia
SEP	 Somatosensory evoked potentials
SMNA	 Autosomal dominant sensory/motor neuropathy with ataxia
SNE	 Subacute Necrotizing Encephalopathy
US	– Ultrasound
VEP	 Visual evoked potential
VLCFA	– Very long chain fatty acid

VLDL – Very low density lipoproteins

INTRODUCTION

Orientation within the group of neurodegenerative disorders has always presented difficulties and lacked transparency.

One demonstrative example is that as early as 1953 Cobb and Bereday made an attempt *to organize the chaos* in neurological literature by pointing out that eight main syndromes existed among the more than fifty clinical depictions that had been outlined among the familial system diseases. The past repeats itself – practically 50 years later, in 2002, Margolis [31] published an article entitled *The Spinocerebellar Ataxias: Order Emerges from Chaos.*

The history of the concept of ataxia in the modern period begins with the first descriptions of the main degenerative ataxic disorders: Friedreich's ataxia between 1863-1877 and Strumpel's hereditary spastic paraplegia between 1886-1924. Pierre Marie recognized cases distinct from Friedreich's ataxia in 1893. Déjèrine and Thomas introduced the term olivopontocerebellar atrophy in 1900. Fifty years later, Greenfield compiled the first comprehensive ataxia classification. Basing his classification on pathological criteria, he divided heredoataxias into three groups of predominantly spinal, spinocerebellar, and cerebellar forms. Pathological classification of the ataxia, however, is not helpful to clinicians - we must attempt to establish diagnosis in vivo. The final functional classification is in Harding's pre-DNA testing era classification, which proposed starting with clinical and genetic features. Harding [19] divided hereditary ataxias and paraplegias into four groups, numbered I-IV. These were as follows: I) Congenital disorders of unknown etiology, II) Ataxic disorders with known metabolic or other cause, III) Ataxic disorders of unknown etiology, and IV) Hereditary spastic paraplegia. Early and late onset cerebellar ataxias were distinguished in group III. The subgroup III B – late onset – includes four types of autosomal dominant cerebellar ataxias which are assigned the classification ADCA I-IV.

In the past decade, the genetic etiologies accounting for many cases of dominant cerebellar ataxia have been discovered. They are now known to result for the most part from the expansion of unstable trinucleotide repeats. This group of disorders, generally referred to as the spinocerebellar ataxias or SCAs, may now be classified with the use of a simple genetic nosology. The nosology is essentially a sequential list in which each new SCA is given a number and, in contrast to Harding's classification, the Arabic numeric system is used. The last discovered autosomal dominant SCA is SCA type 26 [16] maps to chromosome 19p13.3, adjacent to SCA6 (see Table 1, 2).

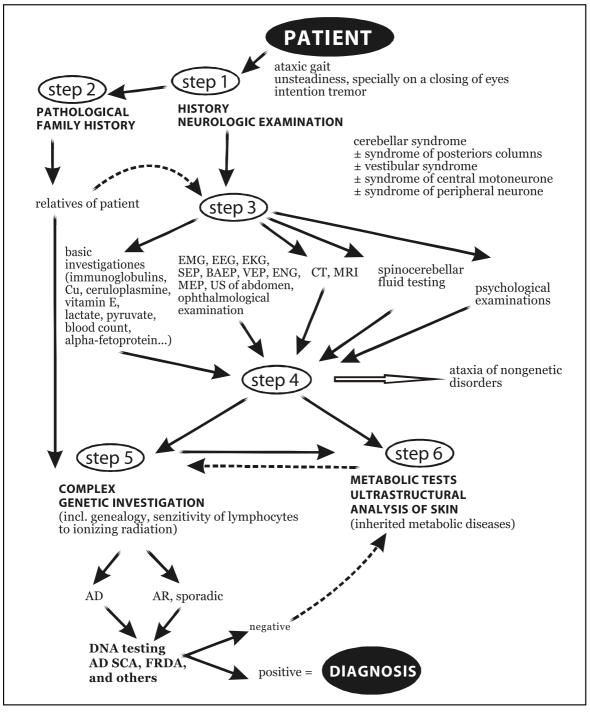
Recent advances in the understanding of SCA pathogenesis provide the opportunity to subclassify part of the disorders based on pathogenesis: polyglutamine disorders, channelopathies, and gene expression disorders. At present such knowledge is not able to be applied from a clinical perspective. We eagerly anticipate that the meaning and value thereof will be realized in therapy specific to individual diseases or types of diseases.

Differential Diagnosis in Spinocerebellar Ataxias

The following paper is not a description of individual clinical or molecular-genetic defined units. It is based upon the logically thought-out approach with which the neurologist works while examining the etiology of an ataxic patient (see Scheme 1). Individual comments draw attention to the stumbling blocks inherent in each and every step of the diagnostic approach and are referred to in the tables which follow.

Step 1 (Scheme 1):

Family History and Clinical Neurological Investigation


• It becomes apparent with the determination of the basis of the detraction of patient history whether sporadic or familial forms are present; sporadic and familial forms, however, are not in and of themselves indicative of the type of inheritance. Both forms may be of genetic origin. The hereditary ataxias can be inherited in an autosomal dominant, autosomal recessive or X-linked manner. In some mitochondrial disorders [29], the maternal type of inheritance is within the realm of possibility.

Problems related to certain types of inheritance may be present in patients:

- without a full family or with an uncooperative wider family group
- with repeated diseases, in which cases anticipation occurs
- a) symptoms of earlier generations are not connected with the current problems of a particular patient
- b) illness manifests itself earlier in descendants than in their families – even in such cases as when both have the same type of mutation, albeit at a different stage of expansion
- such cases (rarely) involve the first occurrence of mutation in the family.

• The clinical manifestation of cerebellar dysfunction reflects asynergia of muscular activity. Motor disturbance involving gait, coordinated limb movements, speech, and extraocular movements dominate (see Table 3).

In the past decade, various studies suggest that the cerebellum participates not only in motor control, but also in the organizations of higher order function such as planning, setshifting, verbal fluency, abstract reason-

Scheme 1. Differential Diagnosis of Syndrome Spinocerebellar Ataxia

ing, working memory, spatial cognition and memory as well (Schmahmann and Sherman – newly defined clinical entity "The Cerebellar Cognitive Affective Syndrome") [39].

The term ataxia is used to summarize the combined effects of movement and dysmetria.

From a neurological point of view ataxia may be defined as follows:

- 1 peripheral (neuritic and a radicullar)
- 2 *spinal* (syndrome of posteriors columns, mostly with spinocerebellar and eventually the pyramidal tracts)

- 3 *bulbo-ponto-peduncular* (ataxia due to altered profound sensation but also the cerebellar system, eventually vestibular system)
- 4 cerebellar
- 5 *cerebral*, so-called *pseudocerebellar ataxia*. (mostly a damage of frontal lobe, rarely of temporal and parietal lobe; a damage of corpus callosum means a combination ataxia and apraxia. Ataxia due to a lesion of thalamus stems from a disturbance of profound sensation.
- 6 labyrinth's ataxia
- 7 functional (psychic) ataxia

SCA	Percent of all ADCA	Average On: (Years)	Average Onset A (Years) Dura		ATAXIA and	Genetic/ Biochemical Defects
SCA1	6% (5–27)	4th decade (<10 to >60)		15 (10–28)	Peripheral neuropathy Pyramidal signs	6p23 CAG expansion Ataxin-1
SCA2	15% (13–24)	3rd–4th deca (<10 to >60		10 (1–30)	Abnormal ocular saccades dementia Peripheral neuropathy	12q24.1 CAG expansion Ataxin-2
SCA3	21% (11–36)	4th decade (10	0–70)	10 (1–20)	Pyramidal and extrapyramidal signs; lid retraction, nystagmus, decreased saccade velocity; amyotrophy sensory neuropathy	14q24.3–q32.2 CAG expansion
SCA4	Rare	4th–5th deca (19–59)	ade	Decades	Sensory axonal neuropathy	16q22.1
SCA5	Rare	3rd–4th deca (10–68)	ade	>25	Myokymia, nystagmus, and altered vibration sense; Early onset, slow course	11p11.q11 CAG expansion not demonstrated as yet
SCA6	15%	5th–6th decade (19–71)		>25	Slowly progressive ataxia; Sometimes episodic ataxia	19p13 CAG expansion with altered alpha1A subunit of the voltage-dependent calcium channel (CACLN1A4)
SCA7	5%	3rd–4th deca (0.5–60)	ade	20 (1–45)	Visual loss with retinopathy	3p21.1–p12 CAG expansion Ataxin-7
SCA8	2–5%	39 (18–65)		Normal lifespan	Hyperreflexia, decreased vibration sense	13q21 CTG expansion
SCA9	Category	not assigned				· ·
SCA10	Rare	36			nystagmus, occasional seizures	22q13
SCA11	Rare	30 (15–70) N		ormal lifespan	Mild disorder ataxia	15 q14–q21.3 Mutation not identified
SCA12	Rare	33 (8–55)			Pure spinocerebellar ataxia, late dementia	5q31–q33 CAG expansion Protein phosphatase
SCA13	Rare	Childhood	Unknown		Mild mental retardation, short stature	19q13.3–q13.4
SCA14	Rare	28 (12–42)		Decades (1–30)	Early axial myoclonus	19q13.4 Protein Kinase C, gamma type
SCA15	Rare	10–50		Decades	Pure ataxia, very slow progression	3pter-3p24.2
SCA16	Rare	39 (20–66)		1–40	Head tremor	8q22.1–q24.1
SCA17	Rare	6-34		>8 years	Mental deterioration	6q27 TATA-box binding protein
SCA19	Rare	34 (20–45)		Decades	Cognitive impairment, myoclonus, tremor	1p21-q21
SCA20	Rare	46 (19–64)		Decades	Early dysarthria, dystonia, dentate calcification	11cen
SCA21	Rare	6-30		Decades	Mild cognitive impairment	7p21–15
SCA22	Rare	10–46		Decades	Slowly progressive ataxia	1p21–q23
SCA23	Rare	5th–6th decade		>10 years	Late–onset ataxia and sensory loss	20p13-12.3
SCA25	Rare	1.5–39		Unknown	Sensory neuropathy	2p21-p13
DRPLA	Rare Japan – 20%	8–20 or 40–60		onset correlates shorter duration	chorea, seizures, myoclonus, and dementia	12p13.31 CAG expansion Atrophin-1

ADCA – Autosomal dominant cerebellar ataxia DRPLA –Dentatorubropallidoluysian atrophy SCA – Spinocerebellar ataxia

Type ADCA by Harding's classification	ATAXIA and	Type SCA by gene	Percent of all SCA
	± Dysarthria	SCA1	5–27%
	± Ophthalmoplegia	SCA2	13–24%
I	± Atrophy of nervus opticus ± Dementia/mental retardation	SCA3	11–36%
	± Extrapyramidal signs	SCA4	Rare
	± Amyotrophy	SCA12	Rare
II	Retinopathy ± Ophthalmoplegia ± Dementia ± Extrapyramidal signs	SCA7	5-8%
		SCA5	Rare
		SCA 6	15%
111	Pure cerebellar ataxia	SCA8	2–5%
		SCA11	Rare
	± Epilepsy	SCA10	Rare
	± Mental retardation	SCA13	Rare
	± Myoclonic epilepsy ± Chorea ± Dementia	DRPLA	Rare (20% Japan)

Table 2. A comparison of classifications by Harding and by molecular testing [19]

ADCA - Autosomal dominant cerebellar ataxia

DRPLA - Dentatorubropallidoluysian atrophy SCA

– Spinocerebellar ataxia

		-	<u> </u>					,		,		,	1
TYPE of SCA	1	2	3	4	5	6	7	8	10	11	12	13	DRPLA
Ataxia	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++
Dysmetria	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++
Dysarthria	+++	+++	+++	++	++	++	+++	+++	+++	+++	±	++	++
Dysphagia	++	++	++	±	±	++	++	-	_	-	-	+	+
Nystagmus	++	+	+++	-	_	++	+	++	+++	+++	-	++	_
Ophthalmo-plegia	++	++	++	±	±	±	++	-	_	-	+	-	_
Sensory loss	++	++	++	+	±	++	++	+	-	-	-	-	+
Fasciculation	++	++	++	-	-	-	±	-	-	-	-	-	_
Spasticity	++	±	++	-	-	+	++	++	-	-	-	-	_
Increased reflexes	++	+	++	-	-	-	+++	+	-	++	+++	+++	-
Decreased reflexes	+	++	++	++	-	+	-	+	_	-	-	-	_
Babinski sign	++	+	++	-	-	-	++	-	-	-	-	-	_
Amyotrophy	+	+	++	+	-	-	++	-	_	-	-	-	_
Chorea	+	+	+	-	-	-	+	-	-	-	-	-	++
Dementia or mental retardation	+	+	+	-	-	-	+	+	_	-	++	+++	++
Epileptic seizures	-	-	_	-	-	-	-	±	+	-	-	+	+
Axonal neuropathy	++	+++	++	+	-	-	+	-	_	-	-	-	_
Bladder dysfunction	++	++	++	±	±	±	++	-	_	-	-	±	_

Table 3. Neurological signs in SCA (modified by Maříková T., Bauer P.: Spinocerebelární ataxie část II – problematika autosomálně dominantních spinocerebelárních ataxií. [(Spinocerebellar ataxias part II – problems of autosomal dominant spinocerebellar ataxias) (In Czech with English abstract)] Čes. a Slov. Neurol. Neurochir., 64/97, 2001, No. 6, p. 323-332) [32]

DRPLA - Dentatorubropallidoluysian atrophy

SCA – Spinocerebellar ataxia

¹⁰² Neuroendocrinology Letters No.2 April Vol.26, 2005 Copyright © Neuroendocrinology Letters ISSN 0172–780X www.nel.edu

Table 4. A FORM - Complex investigation in patients with spinocerebellar syndrome

	NEVROGENETIC CEN of 2 nd Medical Faculty and Teaching Hospital Mo Prague, Czech Republic	MA 68	
COMPLEX INVESTIGATION IN PATIENTS WITH SPINOCEREBELLAR S	SYNDROME		
Clinical examination:			
Ataxia Reflexes, especially L2-S2	yes increased	no decreased	normal
Reflexes, especially 12 02	mercused	uccreased	normai
Positive Babinski sign	yes	no	
Alteration of sensation	yes	no	
Amyotrophy	yes	no	
Dystonia Pes cavus	yes yes	no no	
Scoliosis	yes	no	
Stigmatization, mental retardation, dementia	yes	no	
Other neurological signs:	1		
Ophthalmoplegia, rigidity, dysphagia, bladd	er dysfunction		
1. Sign: When More about a history:	?That 1	means in	years of age
 Hematological investigations Endocrinal investigations Acid-base balance Basic biochemical investigations, vitamin E, alph Immunoglobulins Cerebrospinal fluid – complex investigation Special biochemical investigations (in Amino acids Organic acids Lactate a pyruvate VLCFA, phytanic acid Sulfatide in the urinary sediment Cholesterol and substance of lipids Purins, pyrimidines Ophthalmologic investigation Psychological tests Cardiologic examination, ECG, and echocardiog Electro-nystagmography (ENG) EEG, EMG, VEP, BAEP, SEP, MEP, Complex investigation of a spinocerebral fluid MRI CNS (CT CNS) Ultrasonic investigation of an abdomen	blood, ± urine, ± ce	rebrospinal flu	id)
Chromosomal testing Biopsy (skin, nerve, muscle, possibly liver) DNA testing: FRDA, AD SCA, FXTAS (± more in Special enzyme assay	accordance with a re	st of the investig	gations)

Table 5. Hereditary metabolic/genetic disorders with ataxia (see Notice 3) [8,17,18,20-23,28,25,43,38,48]

INFANTILE HEREDITARY DISORDERS WITH ATAXIA

Ataxia teleangiectasia (AT)
SCA, Friedreich's ataxia (see Table 1,2)
Disorders of amino acids or organic acids with ataxia (succinic semialdehyde dehydrogenase deficiency, disorders of GABA metabolism, L-2-hydroxyglutaric acidemia)
Juvenile GM 1 gangliosidosis
Pelizaeus-Merzbacher disease (deficiency of PANK 2)
Cockayne syndrome
Marinesco-Sjögren syndrome
Ramsay-Hunt syndrome
Late onset infantile form of neuronal ceroid-lipofuscinosis
Carbohydrate-deficient glycoprotein syndrome
Mitochondrial disorders (see Table 7)
Others (*e.g.* Gillespie syndrome, xeroderma pigmentosum, hereditary diseases from a range of vitamin B12, Cayman type of cerebellar ataxia, Joubert disease...)

CHILDHOOD AND ADOLESCENT HEREDITARY DISORDERS WITH ATAXIA

SCA, Friedreich's ataxia (see Table 1,2) Infantile-onset cerebellar ataxia (IOSCA) Juvenile metachromatic and Krabbe leukodystrophy Adrenoleukodystrophy Niemann-Pick disease type C Gaucher type III disease Chronic GM 1 gangliosidosis, Chronic, late onset GM 2 gangliosidosis Refsum disease Wilson's disease Abetalipoproteinemia (Bassen-Kornzweig disease) Early-onset cerebellar ataxia with retained reflexes (EOCA) Ataxia with vitamin E deficiency (AVED) L-2-hydroxyglutaric acidemia Others (*e.g.* mitochondrial disorders, late onset AT, Huntington disease, ALS...)

ADULT HEREDITARY METABOLIC DISORDERS WITH ATAXIA

SCA, Friedreich's ataxia (see Table 1,2) Adult adrenoleukomyeloneuropathy Chronic adult GM 1 gangliosidosis L-2-hydroxyglutaric acidemia Adult metachromatic leukodystrophy Adult Krabbe leukodystrophy Others (*e.g.* FXTAS, mitochondrial disorders, late onset AT, ALS...)

The clinical ataxia picture is the most distinctive and indispensable symptom during diagnosis. Such is the case as a consequence of the rich afferent and efferent of the brain and a wide range of further structures influencing the motor functions of the human body. The ataxia picture, however, serves for the most part as an orientational guide in the localization of particular lesion in the nervous system. For this reason, a combination of clinical testing, neuroimaging and electrophysiological methods provide a more precise picture of the localization and extent of damaged nerve tissue – see **Step 3** [46,47,4].

Step 2 (Scheme 1):

In cases of positive familial history for SCA it is helpful to invite other family members – among whom neurological symptoms occur – to undergo more detailed clinical and laboratory examination. Furthermore, it is useful to recommend consultation with a geneticist in order to provide a more detailed genealogical evaluation.

Notice 1: For example we examined SCA7 verified patient of healthy parents [3] as well as a SCA2 negative but ataxic daughter of SCA2 positive mother (unpublished).

Disease	Gene/ Locus/ Product	Population Frequency	Onset (Years)	Duration (Years)	ATAXIA and Distinguishing Features
Friedrich´s ataxia	<i>FXN</i> 9q13 Frataxin	1–2/50,000	1st – 2nd decade (4–40)	10 – 30	Hyporeflexia, Babinski responses, sensory loss, cardiomyopathy
Ataxia- teleangiectasia	<i>ATM</i> 11q22.3 Serine- protein kinase ATM	1/40,000 to 1/100,000	1st decade	10 – 20	Telangiectasia, cancer increased alpha- fetoprotein, chromosomal instability, immune deficiency
Ataxia with vitamin E deficiency	<i>TTPA</i> 8q13.1-q13.3 Alpha-tocopherol transfer protein	Rare	2–52 years, usually <20	Decades	Similar to Friedrech´s ataxia, head titubation
Ataxia with oculomotor apraxia type 1	APTX 9p13.3 Aprataxin	Unknown	Childhood	Decades	Oculomotor apraxia, choreoathetosis, mild mental retardation, hypoalbuminemia
Ataxia with oculomotor apraxia type 2	SETX 9q34 Probable helicase senataxin	Unknown	10-22	Decades	Cerebellar atrophy, axonal sensorimotor neuropathy, oculomotor apraxia
Infantile-onset spinocerebellar ataxia	<i>IOSCA</i> 10q24	Rare (Finland)	Infancy	Decades	Peripheral neuropathy, athetosis, deafness, optic atrophy,ophthalmoplegia
Marinesco- Sjögren	<i>M</i> SS 5q31	Rare	Infancy	Decades	Mental retardation, cataract, hypotonia, myopathy
AR spastic ataxia of Charlevoix- Saguenay	SACS 13q12 Sacsin	Decades	Childhood		Spasticity, peripheral neuropathy, retinal striation

Table 7. Mitochondrial disorders with a symptom of ataxia

	ATAXIA and						
	Polyneuropathy	Degeneration of spinal cord	Visual impairment	Epilepsy			
Friedreich's disease	+	+	-	-			
X-linked sideroblastic anemia	-	-	-	_			
MELAS	-		+	+			
MERRF	+	-	-	+			
NARP	+	_	+	-			
SNE	-	-	-	-			
НАМ	-	-	-	-			

 Mitochondrial Encephalomyopathy, Lactic Acidosis, Stroke like episodes
 Myoclonic Epilepsy, Ragged Red Fibers MELAS

- NARP
- SNE
- Neuropathy, Ataxia, Retinitis Pigmentosa
 Subacute Necrotizing Encephalopathy
 Hearing loss, Ataxia, Myoclonus (epilepsia partialis continua) HAM

MERRF

Step 3 (Scheme 1):

Genetic forms of ataxia must be distinguished from the many acquired – nongenetic – causes of ataxia with the help of neuroimaging, electrophysiological, biochemical, hematological, ophthalmologic, and spinal fluid examinations [33,36].

The examination data base makes it possible to cover a high percentage of non-inherited diseases and to provide direction to further examination – particularly in cases of inherited metabolic diseases which may imitate AD SCA in the form manifested (see Table 4) [53].

Notice 2. Some degree of action tremor and motor instability may be observed in motor neuron disease (e.g. spinal muscular atrophy) or in deficit of sensation. Neurophysiological investigations are helpful to distinguish between central and peripheral damage of the nervous system. Neurophysiological investigations in a group of autosomal dominant spinocerebellar ataxias may serve as progression markers for clinical trials in the future. They are not too useful of help to direct genetic testing, especially in an early stage of the disease.

Step 4 (Scheme 1):

The evaluation of acquired findings makes it to a large extent possible to:

- a) rule out acquired or non-inherited diseases with ataxia symptoms. In a number of such cases it is possible to intervene medically.
- In infancy especially: congenital ataxia (nonprogressive) ± cerebellar malformations, tumors of the cerebellum and brain stem, inflammations including abscess, vitamin deficiencies, gluten ataxia [45], ataxia due to toxic reasons.
- In adult age especially: alcoholism, demyelization, vascular disease, primary or metastatic tumors, or paraneoplastic diseases associated with occult carcinoma of the ovary, breast, or lung, hypothyroidism, hyperparathyroidism, autoimmune diseases.
- b) indicate specialized examination (**step 6**) to rule out inherited metabolic defects which have a picture similar to spinocerebral ataxia (see Table 5).

For example ATAXIA and:

- S Decreased nerve conduction velocities (EMG); ± an increased protein in the cerebrospinal fluid, ± hepato(spleno)megaly (ultrasonic investigation), leukodystrophy (MRI) ⇒ Suspicion of lysosomal diseases (e.g. late infantile, juvenile and adult forms of sphingolipidoses)
- So biochemical deficits, ± CT scan and MRI with cerebellar atrophy. Giant visual evoked potentials and large somatosensory visual evoked potentials can be elicited. ⇒ Suspicion of neuronal ceroid lipo-fuscinosis (NCL). Electron microscopic examination of skin or conjunctival biopsy shows typical

intralysosomal curvilinear inclusions. Molecular genetic testing is available.

- Elevated serum alpha-fetoprotein. Abnormality in colony survival assay, the ability of colony formation of a lymphoblastoid cell line following irradiation. Breakpoints involved in translocation at the 14q11 and 14q32 sites. ⇒ Suspicion of ataxia-teleangiecta-sia (AT). Molecular genetic testing is performed for mutations affecting the ATM gene locus (11q22.3).
- Acanthocytosis on peripheral blood smears, decreased serum cholesterol, increased high-density lipoprotein cholesterol levels, low levels of LDL, VLDL, and triglyceride; retinitis pigmentosa. ⇒ Suspicion of abetalipoproteinemia (mutations in MTP gene, 4q22-q24, for microsomal triglyceride transfer protein).
- c) indicate, at best in cooperation with a geneticist (**step 5***), DNA diagnostic methods in hereditary ataxia (currently part of AD SCA and Friedreich's ataxia /FRDA/) and others see Table 1,6, and 7. DNA-based mutation analysis of CAG trinucleotide repeat length is a highly specific, diagnostic test for SCA1-3, SCA6 8, SCA12, SCA17, and DRPLA are available [1,2,5,6,9,13].

* Notice 3: Steps 5 and 6 are divided only from historical point of view. Both groups of diseases differ in light of our knowledge in their genetic base and metabolic pathways.

CONCLUSION

Neurodegenerative diseases were originally defined as progressive illnesses or, more precisely, as syndromes. Such diseases had an essentially homogenous clinical picture as well as an unclear etiology and there existed little or no possibility for causal therapeutic influence and impact. Molecular-genetic factfinding methods contributed in a range of cases to the clarification of the etiology of suffering patients. The possibilities of genetic therapy have been intensively researched and results are anxiously expected. At the same time, several well-established existing forms of clinical classification have changed and original syndromes have been broken down into individually defined molecular sub-groups. The result is that new diseases have appeared. The process is far from finished and the daily quota of newly published information continues to grow. In this regard, centralized interdisciplinary cooperation among experts - neurologists, geneticists, radiologists, electrophysiologists and biochemists - has been focused on specific problems and assumes an even greater importance. Moreover, general problem orientation at the level of initial contact – among physicians, local doctors and clinical geneticists - also plays a larger role. One must keep in mind that each and every patient is unique and individual during the differentiation of diagnostic deliberation. The influence of other, as yet unknown forms of interaction may cause the picture of a given illness to differ from that of another manifestation of the same mutation. In addition, clinical manifestations of hereditary diseases

may be mitigated by other acquired diseases – with the exception of seldom considered genetic comorbidity [52,35,27,49].

The general differentially diagnostic progress outlined in the above text and analyzed in current specialized literature serves merely as a guide which may be applied while bearing in mind that NULLA REGULA SINE EXCEPTIONE.

Acknowledgements

The author thanks all collaborators for their interest, cooperation and their inspiring questions. This paper was supported by the research grants No NM/7405-3 from Ministry of Medicine, the Czech Republic.

REFERENCES:

- 1 Albin RL. Dominant ataxias and Friedreich ataxia: an update. Curr Opin Neurol 2003; **16**(4):507–14.
- 2 Alper G, Narayanan V. Friedreich's ataxia. Pediatr Neurol 2003; **28**(5):335–41.
- 3 Bauer P, Kraus J, Matoska V, Brouckova M, Zumrova A, Goetz P. Large de novo expansion of CAG repeats in patient with sporadic spinocerebellar ataxia type 7. J Neurol 2004; **251**(8): 1023–4.
- 4 Brkanac Z, Fernandez M, Matsushita M, Lipe H, Wolff J, Bird TD, Raskind WH Autosomal dominant sensory/motor neuropathy with Ataxia (SMNA): Linkage to chromosome 7q22-q32. Am J Med Genet 2002; **114**:450–7.
- 5 Brusco A, Gellera C, Cagnoli C, Saluto A, Castucci A, Michielotto C, Fetoni V, Mariotti C, Migone N, Di Donato S, Taroni F Molecular genetics of hereditary spinocerebellar ataxia: mutation analysis of spinocerebellar ataxia genes and CAG/CTG repeat expansion detection in 225 Italian families. Arch Neurol 2004; **61**:727–33.
- 6 Campuzano V, Montermini L, Molto MD, Pianese L, Cossee M, Cavalcanti F, Monros E, Rodius F, Duclos F, Monticelli A, et al. Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 1996; **271**(5254):1423–7.
- 7 Cavalier L, Ouahchi K, Kayden HJ, Di Donato S, Reutenauer L, Mandel JL, Koenig M. Ataxia with isolated vitamin E deficiency: heterogeneity of mutations and phenotypic variability in a large number of families. Am J Hum Genet 1998; **62**(2):301–10.
- 8 Cellini E, Forleo P, Nacmias B, Tedde A, Bagnoli S, Piacentini S, Sorbi S. Spinocerebellar ataxia type 17 repeat in patients with Huntington's disease-like and ataxia. Ann Neurol 2004; **56**(1): 163.
- 9 Chakravarty A. Friedreich's ataxia yesterday, today and tomorrow. Neurol India 2003; 51(2):176–82.
- 10 De Michele G, Coppola G, Cocozza S, Filla A. A pathogenetic classification of hereditary ataxias: is the time ripe? J Neurol 2004; **251**(8):913–22.
- 11 Devos D, Schraen-Maschke S, Vuillaume I, Dujardin K, Naze P, Willoteaux C, Destee A, Sablonniere B. Clinical features and genetic analysis of a new form of spinocerebellar ataxia. Neurology 2001; 56:234–8.
- 12 Di Donato S, Gellera C, Mariotti C. The complex clinical and genetic classification of inherited ataxias. II. Autosomal recessive ataxias. Neurol Sci 2001; **22**(3):219–28.
- 13 Durr A, Cossee M, Agid Y, Campuzano V, Mignard C, Penet C, Mandel JL, Brice A, Koenig M Clinical and genetic abnormalities in patients with Friedreich's ataxia. N Engl J Med 1996; 335:1169–75.
- 14 Evidente VG, Gwinn-Hardy KA, Caviness JN, Gilman S. Hereditary ataxias. Mayo Clin Proc 2000; **75**:475–90.
- 15 Grewal RP, Tayag E, Figueroa KP, Zu L, Durazo A, Nunez C, Pulst SM. Clinical and genetic analysis of a distinct autosomal dominant spinocerebellar ataxia. Neurology 1998; 51:1423–6.

- 16 Guo-Yun Yu, Michael J. Howell, Matthew J. Roller, Ting-Dong Xie, Christopher M. Gomez Spinocerebellar ataxia type 26 maps to chromosome 19p13.3 adjacent to SCA6 Annals of Neurology 2005; 57(3):349–354.
- 17 Hagberg BA, Blennow G, Kristiansson B. Carbohydrate-deficient glycoprotein syndromes. Neurodystrophies and Neurolipidoses 1996; **66**:772.
- 18 Hagerman RJ, Leehey M, Heinrichs W, Tassone F, Wilson R, Hills J, Grigsby J, Gage B, Hagerman PJ. Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X. Neurology 2001; 10;57(1):127–30.
- 19 Harding AE (1993) Clinical features and classification of inherited ataxias. In: Harding AE, Deufel T (eds) Advances in Neurology. Raven Press, New York, pp 1–14
- 20 Hodgkins PR, Harris CM, Shawkat FS, Thompson DA, Chong K, Timms C, Russell-Eggitt I, Taylor DS, Kriss A. Joubert syndrome: long-term follow-up. Dev Med Child Neurol 2004; **46**(10):694–9.
- 21 Jacquemont S, Hagerman RJ, Leehey M, Grigsby J, Zhang L, Brunberg JA, Greco C, Des Portes V, Jardini T, Levine R, Berry-Kravis E, Brown WT, Schaeffer S, Kissel J, Tassone F, Hagerman PJ. Fragile X premutation tremor/ataxia syndrome: molecular, clinical, and neuroimaging correlates. Am J Hum Genet 2003; **72**(4):869–78.
- 22 Jacquemont S, Hagerman RJ, Leehey MA, Hall DA, Levine RA, Brunberg JA, Zhang L, Jardini T, Gane LW, Harris SW, Herman K, Grigsby J, Greco CM, Berry-Kravis E, Tassone F, Hagerman PJ. Penetrance of the fragile X-associated tremor/ataxia syndrome in a premutation carrier population. JAMA 2004; 291(4):460–9.
- 23 Jaeken J, Carchon H. Congenital disorders of glycosylation: a booming chapter of pediatrics. Curr Opin Pediatr 2004; **16**(4): 434–9.
- 24 Kaplan J. Spinocerebellar ataxias due to mitochondrial defects. Neurochem Int 2002; **40**(6):553–7.
- 25 Kaye E. Disorders primarily affecting white matter. In: Swaimann K, Ashwal S, editors. Pediatric Neurology Principles and Practice 3rd Ed. Ch 55. St Louis: Mosby 1999; p.857.
- 26 Klockgether T, Ludtke R, Kramer B, Abele M, Burk K, Schols L, Riess O, Laccone F, Boesch S, Lopes-Cendes I, Brice A, Inzelberg R, Zilber N, Dichgans J. The natural history of degenerative ataxia: a retrospective study in 466 patients. Brain 1998; 121(4):589–600.
- 27 Koenig M. Rare forms of autosomal recessive neurodegenerative ataxia. Semin Pediatr Neurol 2003; **10**(3):183–92.
- 28 Kumandas S, Akcakus M, Coskun A, Gumus H. Joubert syndrome: review and report of seven new cases. Eur J Neurol 2004; **11**(8):505–10.
- 29 Leegwater PA, Konst AA, Kuyt B, et al. The gene for leukoencephalopathy with vanishing white matter is located on chromosome 3q27. Am J Hum Genet 1999; **65**(3):728–34.
- 30 Lynch DR, Farmer J. Practical approaches to neurogenetic disease. J Neuroophthalmol 2002; **22**(4):297–304.
- 31 Margolis RL. The spinocerebellar ataxias: order emerges from chaos. Curr Neurol Neurosci Rep 2002; **2**(5):447–56.
- 32 Maříková T., Bauer P. Spinocerebelární ataxie část II problematika autosomálně dominantních spinocerebelárních ataxií [(Spinocerebellar ataxias part II – problems of autosomal dominant spinocerebellar ataxias) (In Czech with English abstract)] Čes. a Slov. Neurol Neurochir 2001; **6**:323–332.
- 33 Mariotti C, Di Donato S. Cerebellar/spinocerebellar syndromes. Neurol Sci. 2002; **22**(2):S88–92.
- 34 Mellick G, Price L, Boyle R. Late-onset presentation of pyruvate dehydrogenase deficiency. Mov Disord 2004; **19**(6):727–9.
- 35 Moretti P, Blazo M, Garcia L, Armstrong D, Lewis RA, Roa B, Scaglia F. Spinocerebellar ataxia type 2 (SCA2) presenting with ophthalmoplegia and developmental delay in infancy. Am J Med Genet A 2004; **124**(4):392–6.
- 36 Ormerod IE, Harding AE, Miller DH, Johnson G, MacManus D, du Boulay EP, Kendall BE, Moseley IF, McDonald WI. Magnetic resonance imaging in degenerative ataxic disorders. J Neurol Neurosurg Psychiatry 1994; **57**(1):51–7.
- 37 Perlman SL. Cerebellar Ataxia. Curr Treat Options Neurol 2000; **2**(3):215–224.
- 38 Prasad A, Kaye EM, Alroy J. Electron microscopic examination of skin biopsy as a cost-effective tool in the diagnosis of lysosomal storage diseases. J Child Neurol 1996; **11**(4):301–8.

Alena Zumrová

- 39 Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998; **121**(4):561–79.
- 40 Schelhaas HJ, Ippel PF, Beemer FA, Hageman G. Similarities and differences in the phenotype, genotype and pathogenesis of different spinocerebellar ataxias. Eur J Neurol 2000; 7(3):309–14.
- 41 Sharfstein SR, Gordon MF, Libman RB, Malkin ES. Adult-onset MELAS presenting as herpes encephalitis. Arch Neurol 1999; 56(2):241–3.
- 42 Shimizu Y, Yoshida K, Okano T, Ohara S, Hashimoto T, Fukushima Y, Ikeda S. Regional features of autosomal-dominant cerebellar ataxia in Nagano: clinical and molecular genetic analysis of 86 families. J Hum Genet 2004; **49**:610–6.
- 43 Slavotinek A, Goldman J, Weisiger K, Kostiner D, Golabi M, Packman S, Wilcox W, Hoyme HE, Sherr E. Marinesco-Sjogren syndrome in a male with mild dysmorphism. Am J Med Genet A 2005; **133**(2):197–201.
- 44 Stevanin G, Bouslam N, Thobois S, Azzedine H, Ravaux L, Boland A, Schalling M, Broussolle E, Durr A, Brice A. Spinocerebellar ataxia with sensory neuropathy (SCA25) maps to chromosome 2p. Ann Neurol 2004; **55**(1):97–104.
- 45 Tunc T, Okuyucu E, Ucleri S, Sonmez T, Coskun O, Selvi E, Inan LE. Subclinical celiac disease with cerebellar ataxia. Acta Neurol Belg 2004; **104**(2):84–6.
- 46 Vaidya SR, Desai SB, Khadilkar SV, Mehta NA. Childhood ataxia with cerebral hypomyelination (CACH) syndrome: a study of three siblings. Neurol India 2004; **52**(3):372–4.
- 47 van de Warrenburg BP, Notermans NC, Schelhaas HJ, van Alfen N, Sinke RJ, Knoers NV, Zwarts MJ, Kremer BP. Peripheral nerve involvement in spinocerebellar ataxias. Arch Neurol 2004; **61**(2):257–61.
- 48 Wong K, Armstrong RC, Gyure KA, Morrison AL, Rodriguez D, Matelon R, et al. Foamy cells with oligodendroglial phenotype in childhood ataxia with diffuse central system hypomyelination syndrome. Acta Neuropathol (Berl) 2000; 100: 635–46.
- 49 Wu YR, Lee-Chen GJ, Lang AE, Chen CM, Lin HY, Chen ST. Dystonia as a presenting sign of spinocerebellar ataxia type 1. Mov Disord 2004; **19**(5):586–7.
- 50 Yu GY, Howell MJ, Roller MJ, Xie TD, Gomez CM. Spinocerebellar ataxia type 26 maps to chromosome 19p13.3 adjacent to SCA6. Ann Neurol 2005; **57**(3):349–54.
- 51 Zortea M, Armani M, Pastorello E, Nunez GF, Lombardi S, Tonello S, Rigoni MT, Zuliani L, Mostacciuolo ML, Gellera C, Di Donato S, Trevisan CP. Prevalence of inherited ataxias in the province of Padua, Italy. Neuroepidemiology 2004; 23:275– 80.
- 52 Zumrova A, Mazanec R, Vyhnalek M, Krepelova A, Musova Z, Krilova S, Appltova L, Havlovicova M. Concomitancy of mutation in FRDA gene and FMR1 premutation in 58 year-old woman. Neuro Endocrinol Lett 2005; **26**(1):71–4.
- 53 Zumrová A.: Spinocerebelární ataxie část I. pokroky a problémy diagnostiky. [(Spinocerebellar ataxias part I – progress and problems of diagnosis) (In Czech with English abstract)] Čes. a Slov. Neurol Neurochir 2001; 5:259–267

Helpful internet addresses:

http://www.neuro.wustl.edu/neuromuscular/

http://www.emedicine.com

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi

http://www.geneclinics.org