Regional brain metabolism as the predictor of performance on the Trail Making Test in schizophrenia. A ¹⁸FDG PET covariation study

Jiri HORACEK^{1,2,3}, Colleen DOCKERY¹, Milan KOPECEK^{1,2,3}, Filip SPANIEL^{1,2,3}, Tomas Novak², Barbora Tislerova^{1,2}, Monika Klirova^{1,2}, Tomas Palenicek² & Cyril Höschl^{1,2,3}

¹ Centre of Neuropsychiatric Studies
 ² Prague Psychiatric Centre
 ³ 3rd Medical Faculty of Charles University, Prague

Correspondence to: Jiri Horacek, M.D., Ph.D. Assoc. Professor of Psychiatry Centre of Neuropsychiatric Studies, Prague Psychiatric Centre Ustavni 91, 181 03 Praha 8, CZECH REPUBLIC TEL: +420 266003370; FAX:+420 266003366 MOBILE: +420 603867477 EMAIL: horacek@pcp.lf3.cuni.cz

Submitted: July 4, 2006	Accepted: July 18, 2006
-------------------------	-------------------------

Key words:Trail Making Test; Positron emission tomography (PET); 18FDG;
schizophrenia; cognitive dysfunction

Neuroendocrinol Lett 2006; 27(5):587–594 PMID: 17159818 NEL270506A05 © Neuroendocrinology Letters www.nel.edu

Abstract OBJECTIVES: With the aim to indicate the functional anatomical substrate of cognitive dysfunction in schizophrenia we evaluated the relationship between resting brain metabolism and performance on the Trail Making Test (TMT). As the prerequisite analysis we compared the performance in Part A and B of the TMT between schizophrenic patients and controls. Resting brain metabolism was investigated by ¹⁸FDG positron emission tomography (PET) as the probe for the relative regional synaptic strength and density.

METHODS: ¹⁸FDG PET data were analyzed by SPM99 with TMT A and B as the covariate ($p \le 0.001$).

RESULTS: Schizophrenic patients (N=42) had worse performance in both TMT A and B compared to controls (N=42). In schizophrenic subjects ¹⁸FDG PET did not predict the performance on Part A (psychomotor speed) but predicted that for Part B (set-shifting and flexibility) of the TMT. The ¹⁸FDG uptake in the superior, middle and inferior frontal gyruses bilaterally was associated with better performance in the TMT B. The negative covariation between ¹⁸FDG uptake and time spent in the TMT B was detected in the temporal and parietal cortices, pre- and postcentral gyruses, precuneus limbic regions (anterior cingulate, uncus) and the pons.

CONCLUSIONS: Our data indicate that hypometabolism in the frontal lobes and hypermetabolism in the temporo-parieto-limbic regions is the neurobiological basis for deficient TMT B performance in schizophrenia.

Introduction

Schizophrenia is a severe neuropsychiatric disorder expressed by positive and negative symptoms, and cognitive dysfunction. Cognitive dysfunction is the characteristic trait marker of schizophrenia and includes deficits of several neuropsychological domains such as psychomotor speed, attention, working memory and executive functions, as well as deficits in controlled attention or planning [1–4].

Neuroimaging studies document that cognitive functioning in schizophrenia is supposed to be closely related to primary brain dysfunction. These studies have consistently produced support for structural changes and decreased metabolism or perfusion in the regions involved in cognitive processing such as in the frontal lobes [5–7], temporal and limbic structures [8–12;57;58], parietal cortex [13–15], cerebellum [16] and basal ganglia [17].

The activation studies evaluating the brain activity during specific cognitive tasks consistently found the deficits in the prefrontal cortex of schizophrenic patients [8;18;19;19–22;22–24]. Although the dysfunction of the prefrontal cortex and other interrelated regions is supposed to be the underlying neurobiology of cognitive dysfunction in schizophrenia [25–27] the functional anatomical substrate of cognitive dysfunction is not well established.

By using ¹⁸fluoro-deoxyglucose (¹⁸FDG) positron emission tomography (PET) in our study we focused on the functional morphological substrate of the performance on the Trail Making Test (TMT) in schizophrenia. The Trail Making Test (TMT) emphasizes set-switching and problem-solving abilities and demonstrates the ability to alternate between cognitive categories for visual search and sequencing. Comprised of two parts, in Part A (TMT A) subjects are required to rapidly connect a series of 25 circles containing numbers in an ascending order. Part B (TMT B) is more complex than A because it requires the subject to connect numbers and letters in an alternating pattern (1-A-2-B-3-C, etc.) in the minimum time possible [28]. In this way, the TMT provides tasks that demand attention, working memory, concentration and cognitive flexibility (or set-shifting) and planning. Concretely, rapid performance in Part A depends primarily on visual scanning and psychomotor speed. In contrast, in Part B the alternating between two sequences is thought to require executive control, specifically flexibility of thinking and a greater demand for working memory and some authors interpret it as an executive task [29]. Deficits on the TMT have been widely documented for schizophrenics [30-33]. Studies have also found that relatives of schizophrenic patients performed significantly worse than controls on the TMT B with a trend for poorer performance on TMTA [31;34]. The verbal version of the TMT has proven to activate the dorsolateral and medial prefrontal cortices as well as the intraparietal sulci [35]. These clinical and experimental data are in congruence with the hypothetical prefrontal deficit in schizophrenia.

As the prerequisite analysis, we compared the performance on the TMT A and B between our group of schizophrenic patients (N=42) and the 42 control subjects. The primary aim of the study was to detect the relationship between performance on the TMT in schizophrenia and the resting regional brain metabolism measured by ¹⁸FDG PET. The use of ¹⁸FDG PET in the resting state primarily reflects the regional glutamate turnover at the synaptic level and so ¹⁸FDG PET is a probe for relative synaptic strength and consequent functional and metabolic activity of the brain regions [36;37]. Based on neuroimaging and clinical studies that reveal abnormalities in the prefrontal cortex and decreased frontal activation in cognitive tasks negatively affecting cognitive function in schizophrenia patients, we propose that the resting metabolism in the frontal lobes will provide a predictor of performance on the TMT test based on its demand for those cortical areas.

Materials and Methods

Samples. We investigated 42 right-handed subjects with schizophrenia diagnosed according ICD 10, aged 18-55 years [22 men and 20 woman, mean age 24.3, s.d.=9.2) by ¹⁸FDG PET and the Trail Making Test. The demographic characteristics are in Table 1. Patients were recruited from the Prague Psychiatric Center. With respect to the clinical intention of the institution and the study protocol, the population was relatively undeteriorated with few hospitalizations (mean 2.6, s.d.=2.4) and the study was focused on non-chronic schizophrenic patients. The clinical symptoms were measured by the Positive and Negative Symptom Scale, PANSS [38]. All subjects were mild to moderately ill with a total PANSS mean score of 61.2, s.d.=18.4 (Table 2). 37 patients were on antipsychotic drugs prescribed in usual doses. From this group 14 patients used risperidone, 4 quetiapine, 6 olanzapine, 2 flufenazine, 3 clozapine, 1 sulpiride, 3 haloperidol, 1 perfenazine and 1 oxyprothepine. Benzodiazepines were allowed and 7 patients used anticholinergics for exrapyramidal side effects. 5 patients were without antipsychotic medication, 4 of them finished the maintenance treatment from 9 to 148 days before entering the study and 1 was drug naive.

The control sample consists of 42 people (20 men and 22 woman, mean age 29,7, s.d.=11.6) from a normal population. All of the subjects in both the schizophrenic and control groups were of Caucasian origin. Applicants with significant medical problems, a history of head trauma, and alcohol or drug abuse within the last 6 months were excluded. The investigation was carried out in accordance with the latest version of the Declaration of Helsinki and the written informed consent was obtained from all subjects after the nature of the procedures had been fully explained. The local ethics committee approved the study. **Table 1:** The demographic characteristics and performance on the Trail Making Test Part A (TMT A) and Part B (TMT B). **Note:** "±" means s.d. and "*" indicates p 0.001.

	Controls	Schizophrenics
N (males:females)	42 (20:22)	42 (22:20)
Age (years)	29.7 (±11.6)	24.3 (±9.2)
Education level (1–3)	2.06 (±0.18)	1.96 (±0.5)
SCH duration (months)	_	46.6 (± 58.8)
Number of hospitalizations	-	2,6 (±2.4)
TMT A (sec.)	28.2 (±6.9)	43.0 (±14.7)*
TMT B (sec.)	64.1 (±21.6)	105.4 (±45.0)*

Table 2: The description of the symptomatology in the schizophrenic group measured by the the Positive and Negative

 Symptom Scale (PANSS) for positive (PANSS P), negative (PANSS N), global (PANSS G) and total (PANSS tot) symptoms.

	Mean	s.d.	Min.	Max.
PANSS P	14.6	5.5	6	29
PANSS N	16.5	6.4	7	31
PANSS G	33.5	9.4	16	57
PANSS tot.	64.6	18.6	30	108

Experimental procedure and PET investigation. Patients performed TMT A and B testing within 4 days of the PET imaging, for which they were fasted for at least 6 hours before. In a dimly-lit and quiet room, 3 MBq/kg of ¹⁸FDG was administered via a peripheral vein catheter. The patients rested for 30 min. in the same room, and then a 2D "hot" transmission scan of the brain was performed, lasting between 5 and 10 minutes (transmission scanning time was corrected to allow for decay of the transmission sources). The data were acquired using the ECAT EXACT 922 (CTI/Siemens, Knoxville, TN) PET scanner. The scan was immediately followed by 3D emission scanning which lasted 15 minutes. The data acquired were reconstructed by iterative OS-EM algorithm (matrix: 1282, brain mode, 47 slices, zoom: 2, subsets: 16, iterations: 6, Hann filter: 5 mm) and implemented using ECAT 7.2 software.

PET data analysis and statistics. The data analysis was performed using Statistical Parametric Mapping, SPM99 (http://www.fil.ion.ucl.ac.uk/spm) implemented in Matlab (Mathworks, USA). The PET scans were converted into the Analyze format, interpolated from 47 to 68 slices, normalized into standard stereotactic space by the use of bilinear sinc. Interpolation and smoothed with an isotropic Gaussian filter (full width at half maximum of 12 mm). The global intensity differences were corrected by proportional scaling (global mean to 50, analysis threshold 0.8) and global calculation was performed by the mean voxel value. The data-preprocessing procedure resulted in the generation of a spatially normalized image of ¹⁸FDG uptake for every voxel in 68 horizontal slices through the brain. A covariate analysis was used to determine the negative and positive co-variation between time spent in TMT A and B, and the PET ¹⁸FDG uptake. Statistical parametric maps of Tvalues were created and the anatomical locations of the activated areas were determined in the normalized space. The p-values at voxel-level were ≤ 0.001 . Chi square was used to determine the differences in the predicted voxels in the left and right hemispheres.

Descriptive statistics were applied to all of the demographic variables. Because the psychopathological and neuropsychological measures were normally distributed (Wilks Shapiro test) the relationship between TMT A and B and age, PANSS, education and duration of schizophrenia were analyzed by Pearson correlation coefficient. Between groups comparisons of demographic data and TMT were performed using t-tests. Due to the different number of patients in the drug free group versus to the patients using antipsychotics we used the nonparametric Mann Whitney test for the comparison. P-values of 5% or less were considered statistically significant.

Results

The group of schizophrenic patients and controls did not differ in age, education status or the males/females ratio (**Table 1**). The schizophrenic patients had a worse performance on the TMT compared with the controls in both Part A and Part B ($p \le 0.001$).

When evaluating the influence of age, PANSS subscores, duration of schizophrenia, education or gender on performance in TMT A and TMT B we found only a positive correlation between TMT A and the PANSS global and total scores ($p \le 0.05$ for both). Other analyses were not significant. We did not detect significant differences between patients with current antipsychotic treatment and the drug free subgroup in both the TMT

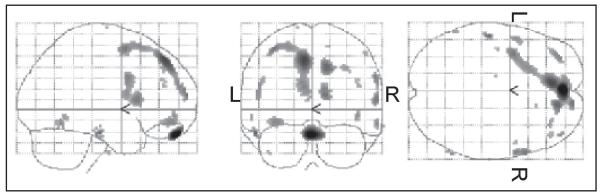


Figure 1: Negative covariation of performance on the TMT B (time) and ¹⁸FDG uptake PET in the schizophrenic sample. For technical details and a list of all significant changes, see Table 2. Note: R, right hemisphere; L, left hemisphere.

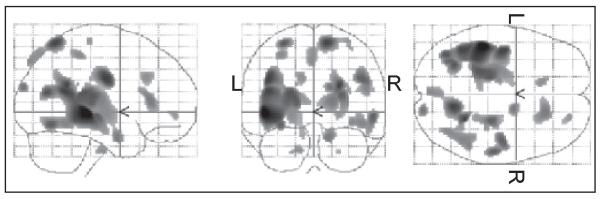


Figure 2: Positive covariation of performance on the TMT B (time) and ¹⁸FDG uptake PET in the schizophrenic sample. For technical details and a list of all significant changes, see Table 2. Note: R, right hemisphere; L, left hemisphere.

A (mean = 43.2, s.d.= 15.1 vs mean = 41.4, s.d.=12.8) and TMT B (mean = 108.5, s.d.=47.3 vs mean = 86.6, s.d.=20.3).

Evaluation of the relationship between resting brain metabolism and TMT performance did not yield any covariation between the TMT A and ¹⁸FDG uptake.

However, in the more complex TMT B subtest we found a negative covariation of time spent to complete it with metabolic activity in the superior, middle and inferior frontal gyruses bilaterally ($p \le 0.001$, **Table 3**, **Figure 1**). This finding indicates that the higher the metabolism is in these regions the better is the cognitive performance on the TMT B. Moreover the number of voxels over the threshold was higher in the left hemisphere in comparison to the right one (595 vs. 235, chi square=155.9, $p \le 0.0001$) and metabolism in the left prefrontal cortex is a stronger predictor of the cognitive outcome in the TMT B subtest.

Using the opposite contrast, the negative covariation between brain metabolism and time in TMT B performance was found in the temporal, parietal cortex, pre- and postcentral gyruses, precuneus limbic regions (anterior cingulate, uncus), and pons. (**Table 3, Figure 2**). These findings indicate that the higher the metabolism is in these regions the worse is the performance on the TMT B. The number of voxels over the threshold was again higher in the left hemisphere in comparison to the right one (4299 vs. 2238, chi square=671,9, p≤0.0001).

Discussion

In our sample we confirmed that patients with schizophrenia have worse cognitive performance on both subtests of the TMT compared with the control group. These data are consistent with previous findings that patients with schizophrenia performed poorly on this test in comparison to the healthy subjects [39;40;52]. The inability to effectively plan, in addition to longer fixation and insufficient sequencing of planning and acting was proven as the core neuropsychological substrate for the deficit of the TMT in schizophrenia [52]. The same authors also did not find a relationship between the «planning variables» with psychopathology, course of illness or antipsychotic medication [41;42;52]. However, two studies [43;44] found that the deficit in the TMT B is more pronounced in disorganized patients. Other studies examining the effects of medication on either the TMT A or B found no significant effect of antipsychotic treatment [45-48] with the exception of one analysis of higher doses of classical neuroleptics [49]. Consistently, in our sample the clinical and demographical variables did not influence the TMT performance with the exception of a correlation between the PANSS global and total scores and the TMT A (a possible effect of lacking concentration in this easier part). Taken together, our data and the majority of previous studies confirm that the deficit in TMT appears to be a trait-like characteristic marker of **Table 3:** Positive and negative covariation between time spent in the Trail Making Test B, and the PET ¹⁸FDG uptake. The p-values for voxels exceeding the height threshold T=3.29 and are lower than 0.001. The extent threshold is 9 voxels.

Ke	x,y,z	R or L	Gyrus	Brodmann area
sitive covar	iation			
4007	-46 -32 0	L	Middle Temporal Gyrus	21
	-42 -14 32	L	Precentral Gyrus	6
	-42 -52 20	L	Superior Temporal Gyrus	22
440	12 -62 64	R	Precuneus	7
	-2-84 48	L	Precuneus	7
	-2-78 54	L	Precuneus	7
216	24 – 50 24	R	Cingulate Gyrus	31
	32 – 54 20	R	Middle Temporal Gyrus	39
119	-28-60 64	L	Superior Parietal Lobule	7
198	56 - 22 - 4	R	Middle Temporal Gyrus	21
321	26 - 24 16	R	Claustrum	*
	24 - 38 14	R	Caudate Tail	
191	46 - 14 30	R	Precentral Gyrus	6
54	16-92 24	R	Cuneus	19
87	14 -2 -24	R	Uncus	28
265	18 28 10	R	White matter	
319	46 – 50 – 10	R	Fusiform Gyrus	37
	36 - 68 - 10	R	Fusiform Gyrus	19
79	50 - 46 22	R	Inferior Parietal Lobule	40
36	-14 -18 -36	L	Pons	
69	-30 -40 54	L	Inferior Parietal Lobule	40
68	-12 24 32	L	Cingulate Gyrus	32
19	32 – 30 66	R	Postcentral Gyrus	3
25	22 52 -2	R	Superior Frontal Gyrus	10
14	34-58 60	R	Superior Parietal Lobule	7
10	56 - 26 22	R	Postcentral Gyrus	40
gative cova	riation			
165	-2 54 -24	L	Superior Frontal Gyrus	11
353	-6 42 48	L	Superior Frontal Gyrus	8
	-36 4 58	L	Middle Frontal Gyrus	6
	-8 56 22	L	Superior Frontal Gyrus	9
79	14 48 40	R	Superior Frontal Gyrus	8
40	14 62 14	R	Superior Frontal Gyrus	10
57	62 16 10	R	Inferior Frontal Gyrus	44
38	60 6 30	R	Precentral Gyrus	6
39	-34 48 -12	L	Superior Frontal Gyrus	11
12	62 –58 –14	R	Inferior Temporal Gyrus	20
38	-52 6 16	L	Inferior Frontal Gyrus	44
	-50 8 24	L	Inferior Frontal Gyrus	9
9	32 40 40	R	Middle Frontal Gyrus	8

Note: R, right hemisphere; L, left hemisphere; x, y, z, the coordinates of the Talairach space for each maximum; Ke, is the number of voxels in the cluster.

schizophrenia and the clinical measures and antipsychotics have no or very little effect on performance on the TMT.

In our study we evaluated the relationship between the TMT performance and the resting brain metabolism. Hence, our neuroimaging data did not answer the question of which brain areas are activated by the test but they answer the question whether the resting metabolism predicts the neurocognitive performance. The specified resting condition was described as Random Episodic Silent Thinking (REST) and was proven to offer favorable reliability in PET findings in a schizophrenic population [50]. The ¹⁸FDG PET uptake in the resting state primarily reflects the regional glutamate turnover at the synaptic level and so ¹⁸FDG PET is the probe for synaptic strength, and local integrated synaptic activity and integrity [36;51]. The physiological relevance of ¹⁸FDG uptake was recently documented directly by the correlation with synaptophysin level in baboons and is accepted as the marker of synaptic density[37]. Therefore, in our study the ¹⁸FDG uptake is used to indicate the synaptic density as the substrate for effective cognitive functioning in TMT A and B.

We did not find any relationship between the performance on the Part A of the TMT and the ¹⁸FDG PET uptake. This negative finding is in congruence with the studies demonstrating that TMT A in contrast to TMT B did not discriminate schizophrenic and control subjects [39;40;52]. The TMT A is a simple task mostly reflecting psychomotor speed, and it does not involve set-switching abilities or executive functions.

However, robust findings were detected in TMT part B for both positive and negative prediction by PET. We found that the higher the metabolism was in the frontal lobes, the shorter was the time of TMT B performance. This observation supports the hypothesis that deficit in prefrontal lobe neurodevelopment leads to cognitive dysfunction in schizophrenia [24–27]. These findings are in congruence with our a priori formulated hypothesis and the p-level 0.001 uncorrected for multiple comparisons is fully acceptable [53].

The negative covariation between ¹⁸FDG uptake and time spent in the TMT B were detected in the temporal and other neocortical and limbic regions (anterior cingulate, uncus) and pons. Generally, the clusters predicting the negative cognitive performance on the TMT B are localized more posterior than regions predicting good performance. These regions were not involved in the a priori hypothesis and due to the lack of correction for multiple comparisons the results should be interpreted cautiously. The disturbances in the identified regions were previously documented in schizophrenia and in most studies they were associated with positive symptoms. The differences in metabolism or perfusion were documented for temporal and limbic lobe [11;12;53-56], anterior cingulate [57;58], and hippocampus [9-10;53;57;59]. The superior parietal cortex was also found to be overactive in relation to positive and disorganized symptoms [13-15]. In the context of these observations, it is possible to speculate that the regions, which covary with a longer time in the TMT B, reflect the positive and disorganized dimensions of schizophrenia.

In our study we found significant lateralization in favor of the left side in both the positive and negative covariation with the TMT B. This finding would be interpreted both as the lateralization of the TMT B task [35] and as the asymmetrical (left sided) distribution of brain dysfunction in schizophrenia documented by several neuroimaging studies [60–66].

In conclusion, in our study the prefrontal activity is a clinically positive predictor of better TMT B performance and temporal, limbic and parietal hyperactivity is the negative predictor of TMT B performance. The

core distinction between prefrontal and more posterior regions in the opposite direction for prediction of TMT B performance is congruent with the neurodevelopemental disconnection theory of schizophrenia. This concept refers to the failure of proper integration (disconnection) between the prefrontal and temporal cortices. The attenuation of fronto-temporal integration results in the hypoactivity of the prefrontal cortex and hyperactivity of the temporal cortex and other interconnected regions in tasks that require the activity of the prefrontal cortex [67–74]. In the resting state the relatively higher activity of the temporal cortex should be expected as a response to decreased inhibition of the prefrontal cortex [24;75]. This dysfunction within a widely distributed neocortical-limbic neural network would result in failure of cognitive functions such as planning ability as detected by the TMT B.

Acknowledgment: This research was supported by the Ministry of Education, Youth and Sports of Czech Republic project 1M0517 and by the Ministry of Health of Czech Republic project MZ0PCP2005, and grant No. NR8792.

REFERENCES:

- 1 Callaway E, Naghdi S. An information processing model for schizophrenia. Arch Gen Psychiatry 1982; **39**(3):339–347.
- 2 Lieh-Mak F, Lee PW. Cognitive deficit measures in schizophrenia: factor structure and clinical correlates. Am J Psychiatry 1997; **154**(6 Suppl):39–46.
- 3 Mohamed S, Paulsen JS, O'Leary D, Arndt S, Andreasen N. Generalized cognitive deficits in schizophrenia: a study of first-episode patients. Arch Gen Psychiatry 1999; **56**(8):749–754.
- 4 Tollefson GD. Cognitive function in schizophrenic patients. J Clin Psychiatry 1996; **57** Suppl 11:31–39.
- 5 Buchanan RW, Carpenter WT, Jr. The neuroanatomies of schizophrenia. Schizophr Bull 1997; **23**(3):367–372.
- 6 Frith CD. Functional brain imaging and the neuropathology of schizophrenia. Schizophr Bull 1997; **23**(3):525–527.
- 7 Stevens JR. Anatomy of schizophrenia revisited. Schizophr Bull 1997; **23**(3):373–383.
- 8 Weinberger DR, Berman KF, Suddath R, Torrey EF. Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: a magnetic resonance imaging and regional cerebral blood flow study of discordant monozygotic twins. Am J Psychiatry 1992; 149(7):890–897.
- 9 Heckers S, Rauch SL, Goff D et al. Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nat Neurosci 1998; **1**(4):318–323.
- 10 Horáček J, Kopeček M, Španiel F et al. Resting regional brain metabolism in patients with schizophrenia. 18FDG PET study. Psychiatrie 2004; **8**(Suppl.3):43–50.
- 11 Catafau AM, Parellada E, Lomena FJ et al. Prefrontal and temporal blood flow in schizophrenia: resting and activation technetium-99m-HMPAO SPECT patterns in young neuroleptic-naive patients with acute disease. J Nucl Med 1994; **35**(6):935–941.
- 12 Paulman RG, Devous MD, Sr., Gregory RR et al. Hypofrontality and cognitive impairment in schizophrenia: dynamic single-photon tomography and neuropsychological assessment of schizophrenic brain function. Biol Psychiatry 1990; **27**(4):377–399.
- 13 Franck N, O'Leary DS, Flaum M, Hichwa RD, Andreasen NC. Cerebral blood flow changes associated with Schneiderian first-rank symptoms in schizophrenia. J Neuropsychiatry Clin Neurosci 2002; **14**(3):277–282.

- 14 Schroder J, Buchsbaum MS, Siegel BV et al. Cerebral metabolic activity correlates of subsyndromes in chronic schizophrenia. Schizophr Res 1996; **19**(1):41–53.
- 15 Schroder J, Buchsbaum MS, Siegel BV, Geider FJ, Niethammer R. Structural and functional correlates of subsyndromes in chronic schizophrenia. Psychopathology 1995; 28(1):38–45.
- 16 Levitt JJ, McCarley RW, Nestor PG et al. Quantitative volumetric MRI study of the cerebellum and vermis in schizophrenia: clinical and cognitive correlates. Am J Psychiatry 1999; **156**(7):1105– 1107.
- 18 Buchsbaum MS, Nuechterlein KH, Haier RJ et al. Glucose metabolic rate in normals and schizophrenics during the Continuous Performance Test assessed by positron emission tomography. Br J Psychiatry 1990; **156**:216–227.
- 19 Crespo-Facorro B, Wiser AK, Andreasen NC et al. Neural basis of novel and well-learned recognition memory in schizophrenia: a positron emission tomography study. Hum Brain Mapp 2001; 12(4):219–231.
- 20 Zorrilla LT, Jeste DV, Brown GG. Functional MRI and novel picture-learning among older patients with chronic schizophrenia: abnormal correlations between recognition memory and medial temporal brain response. Am J Geriatr Psychiatry 2002; **10**(1):52– 61.
- 21 Honey GD, Bullmore ET, Sharma T. De-coupling of cognitive performance and cerebral functional response during working memory in schizophrenia. Schizophr Res 2002; **53**(1–2):45–56.
- 22 Kindermann SS, Karimi A, Symonds L, Brown GG, Jeste DV. Review of functional magnetic resonance imaging in schizophrenia. Schizophr Res 1997; 27(2–3):143–156.
- 23 Egan MF, Goldberg TE, Kolachana BS et al. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci U S A 2001; 98(12):6917–6922.
- 24 Weinberger DR, Gallhofer B. Cognitive function in schizophrenia. Int Clin Psychopharmacol 1997; **12** Suppl 4:S29–S36.
- 25 Andreasen NC. Schizophrenia: the fundamental questions. Brain Res Brain Res Rev 2000; **31**(2–3):106–112.
- 26 Dolan RJ, Fletcher PC, McKenna P, Friston KJ, Frith CD. Abnormal neural integration related to cognition in schizophrenia. Acta Psychiatr Scand Suppl 1999; **395**:58–67.
- 27 Goldman-Rakic PS, Selemon LD. Functional and anatomical aspects of prefrontal pathology in schizophrenia. Schizophr Bull 1997; 23(3):437–458.
- 28 Reitan RM. Validity of the Trail Making Test as an indicator of organic brain damage. Percept Mot Skills 1958; 8:271–276.
- 29 Reitan RM, Wolfson D. Category Test and Trail Making Test As Measures of Frontal-Lobe Functions. Clinical Neuropsychologist 1995; **9**(1):50–56.
- 30 Kim MS, Kang SS, Youn T, Kang DH, Kim JJ, Kwon JS. Neuropsychological correlates of P300 abnormalities in patients with schizophrenia and obsessive-compulsive disorder. Psychiatry Res 2003; **123**(2):109–123.
- 31 Keefe RS, Silverman JM, Roitman SE et al. Performance of nonpsychotic relatives of schizophrenic patients on cognitive tests. Psychiatry Res 1994; **53**(1):1–12.
- 32 Oades RD, Rao ML, Bender S, Sartory G, Muller BW. Neuropsychological and conditioned blocking performance in patients with schizophrenia: assessment of the contribution of neuroleptic dose, serum levels and dopamine D2-receptor occupancy. Behav Pharmacol 2000; **11**(3–4):317–330.
- 33 Mahurin RK, Velligan DI, Miller AL. Executive-frontal lobe cognitive dysfunction in schizophrenia: a symptom subtype analysis. Psychiatry Res 1998; 79(2):139–149.
- 34 Gochman PA, Greenstein D, Sporn A et al. Childhood onset schizophrenia: familial neurocognitive measures. Schizophr Res 2004; 71(1):43–47.
- 35 Moll J, Oliveira-Souza R, Moll FT, Bramati IE, Andreiuolo PA. The cerebral correlates of set-shifting: an fMRI study of the trail making test. Arq Neuropsiquiatr 2002; **60**(4):900–905.
- 36 Shulman RG. Functional imaging studies: linking mind and basic neuroscience. Am J Psychiatry 2001; **158**(1):11–20.

- 37 Rocher AB, Chapon F, Blaizot X, Baron JC, Chavoix C. Restingstate brain glucose utilization as measured by PET is directly related to regional synaptophysin levels: a study in baboons. Neuroimage 2003; 20(3):1894–1898.
- 38 Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 1987; 13(2):261– 276.
- 39 Braff DL, Heaton R, Kuck J et al. The generalized pattern of neuropsychological deficits in outpatients with chronic schizophrenia with heterogeneous Wisconsin Card Sorting Test results. Arch Gen Psychiatry 1991; **48**(10):891–898.
- 40 Zalla T, Joyce C, Szoke A et al. Executive dysfunctions as potential markers of familial vulnerability to bipolar disorder and schizo-phrenia. Psychiatry Res 2004; **121**(3):207–217.
- 41 Wolwer W, Gaebel W. Impaired visuomotor integration in acute schizophrenia. World J Biol Psychiatry 2003; **4**(3):124–128.
- 42 Wolwer W, Falkai P, Streit M, Gaebel W. Trait characteristic of impaired visuomotor integration during Trail-Making Test B performance in schizophrenia. Neuropsychobiology 2003; 48(2):59– 67.
- 43 Brazo P, Marie RM, Halbecq I et al. Cognitive patterns in subtypes of schizophrenia. Eur Psychiatry 2002; **17**(3):155–162.
- 44 Moritz S, Andresen B, Jacobsen D et al. Neuropsychological correlates of schizophrenic syndromes in patients treated with atypical neuroleptics. Eur Psychiatry 2001; **16**(6):354–361.
- 45 Sweeney JA, Haas GL, Keilp JG, Long M. Evaluation of the stability of neuropsychological functioning after acute episodes of schizophrenia: one-year followup study. Psychiatry Res 1991; **38**(1):63–76.
- 46 Allen DN, Gilbertson MW, van Kammen DP, Kelley ME, Gurklis JA, Jr., Barry EJ. Chronic haloperidol treatment does not affect structure of attention in schizophrenia. Schizophr Res 1997; 25(1):53– 61.
- 47 Cleghorn JM, Kaplan RD, Szechtman B, Szechtman H, Brown GM. Neuroleptic drug effects on cognitive function in schizophrenia. Schizophr Res 1990; **3**(3):211–219.
- 48 Gilbertson MW, van Kammen DP. Recent and remote memory dissociation: medication effects and hippocampal function in schizophrenia. Biol Psychiatry 1997; **42**(7):585–595.
- 49 Sweeney JA, Keilp JG, Haas GL, Hill J, Weiden PJ. Relationships between medication treatments and neuropsychological test performance in schizophrenia. Psychiatry Res 1991; **37**(3):297– 308.
- 50 Andreasen NC, O'Leary DS, Cizadlo T et al. Remembering the past: two facets of episodic memory explored with positron emission tomography. Am J Psychiatry 1995; **152**(11):1576–1585.
- 51 Magistretti PJ, Pellerin L, Rothman DL, Shulman RG. Energy on demand. Science 1999; **283**(5401):496–497.
- 52 Wolwer W, Gaebel W. Impaired Trail-Making Test-B performance in patients with acute schizophrenia is related to inefficient sequencing of planning and acting. J Psychiatr Res 2002; **36**(6):407–416.
- 53 Friston KJ, Holmes A, Poline JB, Price CJ, Frith CD. Detecting activations in PET and fMRI: levels of inference and power. Neuroimage 1996; **4**(3 Pt 1):223–235.
- 54 Ebert D, Feistel H, Kaschka W. Left temporal hypoperfusion in catatonic syndromes: a SPECT study. Psychiatry Res 1992; 45(4):239–241.
- 55 Wolkin A, Jaeger J, Brodie JD et al. Persistence of cerebral metabolic abnormalities in chronic schizophrenia as determined by positron emission tomography. Am J Psychiatry 1985; **142**(5):564–571.
- 56 Wolkin A, Angrist B, Wolf A et al. Low frontal glucose utilization in chronic schizophrenia: a replication study. Am J Psychiatry 1988; **145**(2):251–253.
- 57 Molina V, Sanz J, Reig S et al. Hypofrontality in men with firstepisode psychosis. Br J Psychiatry 2005; **186**:203–208.
- 58 Davidson LL, Heinrichs RW. Quantification of frontal and temporal lobe brain-imaging findings in schizophrenia: a meta-analysis. Psychiatry Res 2003; **122**(2):69–87.
- 59 Buchsbaum MS, Hazlett E. Theoretical approaches to regional cerebral metabolic rate in schizophrenia. International Review of Psychiatry **9**[4]:339–354. 1997.

- 60 Španiel F, Tintěra J, Hájek T, Horacek J, Dezortova M, Hajek M. Language lateralization in monozygotic twins discordant for schizophrenia. Evidence from functional MRI. Lateralizace řeči u monozygotních dvojčat diskordantních pro schizofrenii. Studie sfunkční magnetickou rezonancí. Psychiatrie 2003; 7(4):301–303.
- 61 Mitchell RL, Elliott R, Woodruff PW. fMRI and cognitive dysfunction in schizophrenia. Trends Cogn Sci 2001; 5(2):71–81.
- 62 Kircher TT, Liddle PF, Brammer MJ, Williams SC, Murray RM, Mc-Guire PK. Neural correlates of formal thought disorder in schizophrenia: preliminary findings from a functional magnetic resonance imaging study. Arch Gen Psychiatry 2001; **58**(8):769–774.
- 63 Rubia K, Russell T, Bullmore ET et al. An fMRI study of reduced left prefrontal activation in schizophrenia during normal inhibitory function. Schizophr Res 2001; **52**(1–2):47–55.
- 64 Spence SA, Hirsch SR, Brooks DJ, Grasby PM. Prefrontal cortex activity in people with schizophrenia and control subjects. Evidence from positron emission tomography for remission of 'hypofrontality' with recovery from acute schizophrenia. Br J Psychiatry 1998; **172**:316–323.
- 65 Wible CG, Shenton ME, Hokama H et al. Prefrontal cortex and schizophrenia. A quantitative magnetic resonance imaging study. Arch Gen Psychiatry 1995; **52**(4):279–288.
- 66 Wiesel FA, Wik G, Sjogren I, Blomqvist G, Greitz T, Stone-Elander S. Regional brain glucose metabolism in drug free schizophrenic patients and clinical correlates. Acta Psychiatr Scand 1987; **76**(6):628–641.
- 67 Fletcher P, McKenna PJ, Friston KJ, Frith CD, Dolan RJ. Abnormal cingulate modulation of fronto-temporal connectivity in schizo-phrenia. Neuroimage 1999; **9**(3):337–342.

- 68 Fletcher PC, Frith CD, Grasby PM, Friston KJ, Dolan RJ. Local and distributed effects of apomorphine on fronto-temporal function in acute unmedicated schizophrenia. J Neurosci 1996; 16(21):7055–7062.
- 69 Lawrie SM, Buechel C, Whalley HC, Frith CD, Friston KJ, Johnstone EC. Reduced frontotemporal functional connectivity in schizophrenia associated with auditory hallucinations. Biol Psychiatry 2002; **51**(12):1008–1011.
- 70 Meyer-Lindenberg A, Miletich RS, Kohn PD et al. Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nat Neurosci 2002; **5**(3):267–271.
- 71 Yurgelun-Todd DA, Waternaux CM, Cohen BM, Gruber SA, English CD, Renshaw PF. Functional magnetic resonance imaging of schizophrenic patients and comparison subjects during word production. Am J Psychiatry 1996; **153**(2):200–205.
- 72 Weinberger DR. The biological basis of schizophrenia: new directions. J Clin Psychiatry 1997; **58** Suppl 10:22–27.
- 73 Weinberger DŔ, Egan MF, Bertolino A et al. Prefrontal neurons and the genetics of schizophrenia. Biol Psychiatry 2001; **50**(11):825– 844.
- 74 Friston KJ, Liddle PF, Frith CD, Hirsch SR, Frackowiak RS. The left medial temporal region and schizophrenia. A PET study. Brain 1992; **115**(Pt 2):367–382.
- 75 Weinberger DR. From neuropathology to neurodevelopment. Lancet 1995; **346**(8974):552–557.