Effects of subchronic exposure to Spartakus (prochloraz) on common carp *Cyprinus carpio*

Ivana HALUZOVÁ¹, Helena MODRÁ¹, Jana BLAHOVÁ¹, Petr MARŠÁLEK¹, Zuzana ŠIROKÁ¹, Ladislav GROCH², Zdeňka SVOBODOVÁ¹

- 1 Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
- 2 Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic

<i>Correspondence to:</i>	MVDr. Ivana Haluzová,
-	University of Veterinary and Pharmaceutical Sciences Brno,
	Palackého 1/3, 612 42 Brno, Czech Republic.
	теl: + 420-541 562 781; fax: + 420-541 562 790; е-маіl: ihaluzova@vfu.cz

Submitted: 2010-09-10 Accepted: 2010-11-22 Published online: 2010-12-28

Key words:fungicide; fish; biometric indices; biochemical indices; xenobiotic metabolizing
enzymes; haematological indices; antioxidant indices

Neuroendocrinol Lett 2010; 31 (Suppl.2):105–113 PMID: 21187831 NEL31S210A18 © 2010 Neuroendocrinology Letters • www.nel.edu

Abstract **OBJECTIVES**: The aim of the study was to investigate effects of the fungicide formulation Spartakus (prochloraz 450 g.L-1) on common carp Cyprinus carpio through biometric, biochemical, haematological and antioxidant indices, induction of xenobiotic metabolizing enzymes and histological examination of selected tissues. **DESIGN:** The test was performed on juvenile fish, which was exposed to Spartakus (concentrations of prochloraz: 0.05; 0.15 and 0.38 mg.L-1) for 28 days. Haematological indices were assessed using unified methods of haematological examination in fish. Plasma biochemical indices were determined by biochemical analyzer. Concentration of total cytochrome P450 (CYP), glutathione (GSH) content and glutathione-S-transferase (GST) activity were determined spectrophotometrically in hepatopancreas. Activity of liver ethoxyresorufin-O-deethylase (EROD) activity was measured spectrofluorimetrically. Ferric reducing ability of plasma (FRAP) and ceruloplasmin activity were assessed spectrophotometrically. Histological changes in samples of hepatopancreas, skin, gills, spleen, head kidney and caudal kidney were examined by light microscopy. **RESULTS:** There was a significant rise in hepatosomatic index (HSI) (p<0.01), CYP and EROD (p<0.05) of fish exposed to prochloraz of 0.15 and 0.38 mg.L⁻¹ whereas GST was induced by all concentrations tested and GSH by 0.38 mg.L⁻¹ (p<0.05). Red blood cell count decreased significantly (p<0.05) in prochloraz of 0.05 and 0.15 mg.L⁻¹. Plasma potassium increased (p < 0.01) in all Spartakus treated groups, a decline in total protein (p<0.05), ALT, Na⁺ and Ca (p<0.01) was found in fish exposed to prochloraz of 0.38 mg.L⁻¹. Ceruloplasmin activity was elevated (p < 0.05) in the highest concentration tested, FRAP declined (p < 0.05) in the same group. Histopathological changes in gills were demonstrated in all pesticide treated groups, with a decreased activity of skin mucous cells in prochloraz of 0.38 mg.L⁻¹. **CONCLUSION:** The subchronic exposure to Spartakus influenced HSI, induced xenobitic metabolizing enzymes, initiated a disorder of selected plasma indices and a decline in red blood cell count, caused minor histological impairment, and affected antioxidant activities of the test fish.

To cite this article: **Neuroendocrinol Lett** 2010; **31**(Suppl.2):105–113

Abbreviations:

SL KI HSI b. w. RBC WBC PCV Hb	- standard length - condition factor - hepatosomatic index - body weight - red blood cell count - white blood cell count - packed cell volume, haematocrit - haemoglobin
MCV	- mean corpuscular volume
MCH	- mean corpuscular haemoglobin
MCHC	- mean corpuscular haemoglobin concentration
glc	- glucose
alb	- albumine
ТР	- total protein
TAG	- triglycerides
LDH	- lactate dehydrogenase
AST	- aspartate aminotransferase
ALT	- alanine aminotransferase
XME	 xenobiotic metabolizing enzymes
CYP	- cytochrome P450
EROD	 ethoxyresorufin-O-deethylase
GST	- glutathione-S-transferase
GSH	- glutathione
FRAP	 ferric reducing ability of plasma
i. p.	- intraperitoneal

INTRODUCTION

The pollution of the aquatic environment with the pesticide discharge is still of a great concern. The attention has been recently focused on the effects caused by a long-term exposure to contaminants. Prochloraz (*N*-propyl-*N*-[2-(2,4,6-trichlorophenoxy)ethyl]imidazole-1-carboxamide) is a fungicide compound used as a seed treatment and foliar spray on a wide range of crops, e.g. cereals, oilseed rape, rice and ornamentals. It interferes with conversion of lanosterol to ergosterol (essential component of fungal cell membranes) by inhibition of the cytochrome P450-dependent 14 α -demethylase (Zarn *et al.* 2003).

Prochloraz was reported to act as a weak tumour promoter of hepatocarcinogenesis in female rats, however, it did not initiate the process (Kato et al. 1998). The reproductive toxic effects of prochloraz have been widely studied both in vitro and in vivo (e.g. Vinggaard et al. 2002; Vinggaard et al. 2005; Andersen et al. 2002; Brande-Lavridsen et al. 2008). Prochloraz displays multiple endocrine activities which include inhibition of CYP enzymes involved in steroid synthesis and antagonism of the androgen receptor (Ankley et al. 2005; Kinnberg et al. 2007). Saglio et al. (2003) studied behavioral toxicity of prochloraz in goldfish Carassius auratus. In vitro and in vivo induction of xenobiotic metabolizing enzymes has been studied mostly in rainbow trout with a short exposure period (Bach & Snegaroff 1989; Snegaroff & Bach 1989).

Although prochloraz has been scrutinized in detail, the amount of information of its effects on fish in *vivo* is not complete, especially under chronic and subchronic conditions. The aim of our study was to assess the subchronic effects of prochloraz exposure on common carp *Cyprinus carpio* through biometric, biochemical, haematological and antioxidant indices, biomarkers of xenobiotic metabolization and histological examination of the test fish. A commercial pesticide formulation Spartakus (prochloraz 450 g.L^{-1}) was used in the experiment.

MATERIAL AND METHODS

The common carp $(218.4 \pm 64.5 \text{ g}, \text{SL}: 19.7 \pm 2 \text{ cm})$ were obtained from a commercial fish farm. They were randomly distributed into ten 200L glass aquaria, 15 specimens per each. The fish were supplied twice a day with commercial feed (Coppens International bv) at a total rate of 1.5% body weight. After 2-week acclimation to laboratory conditions (water temperature 19–22°C, photoperiod 12/12), the fish were exposed to Spartakus (prochloraz 450 g.L⁻¹; BASF SE, Germany) for 28 days. Each treated and control group was performed in duplicate. 96h LC₅₀ of prochloraz was determined 1 mg.L⁻¹ and 2.2 mg.L⁻¹ for rainbow trout Oncorhynchus mykiss and bluegill sunfish Lepomis macrochirus, respectively (Gangolli 1999). Thus, proportional dosages 1/45, 1/15 and 1/5 of the latter value were chosen for the test. Test solutions were sampled and the concentrations of prochloraz were measured five times within the experiment. Actual concentrations were as follows; 0.05; 0.15 and 0.38 mg.L⁻¹, respectively. These are further used to refer to the test groups.

Prochloraz concentrations exceeded 80% of the nominal concentrations over the test period. The control groups were subjected to dechlorinated tap water. The producer states Spartakus contains these substances: prochloraz (40% W/W), solvent naphtha (30–40% W/W), N-methyl-2-pyrrolidon (1–5% W/W), calcium dodecylbenzene sulphonate (3–4% W/W), light solvent naphtha (1.2–1.8% W/W), mixture of emulsifiers (5.6– 6.8% W/W) and isobutanol (1–1.4% W/W). The test was conducted in a flow-through system, the volume of test solutions was exchanged twice a day. The pH of the solutions varied from 7.1 to 7.9, oxygen saturation was \geq 60%.

After the stipulated exposure period, individual blood samples were taken by cardiac puncture and stabilized with aqueous solution of heparin (50 IU per ml of blood). The fish were euthanized by cutting the vertebral column at the base of the skull, their body weight and standard lenght were recorded. Tissue samples and the whole liver (hepatopancreas) were removed. The sections of liver which were not used for histological examination were stored at -85 °C until further analyses were performed.

Biometric parameters

The condition factor of each fish was calculated using the following formula: $KI = (b.w. [g]/SL [cm]^3) \times 100$.

The hepatosomatic index was calculated according to the formula $HSI = liver weight/b.w. \times 100$.

Haematological parameters

RBC, WBC, PCV, Hb, MCV, MCH and MCHC were assessed according to Svobodova *et al.* (1991).

Biochemical profile

Plasma biochemical indices (glucose, albumin, total protein, triglycerides, total calcium, inorganic phosphorus, chloride, potassium, sodium, lactate, lactate dehydrogenase, aspartate aminotransferase and alanine aminotransferase) were determined by the biochemical analyzer Konelab 20i using commercial test kits (BioVendor).

Xenobiotic metabolizing enzymes and biomarkers

Total CYP, activities of ethoxyresorufin-O-deethylase and glutathione-S-transferase and glutathione content were determined in the liver samples.

CYP and EROD activity

After homogenisation in buffer (pH 7.4), the liver samples were centrifuged (10,000 g, 20 min, 4 °C). The supernatant was re-centrifuged again (100,000 g, 1 h at 4°C), the final supernatant was drained and the pellet was washed and resuspended in the buffer (pH7.4). Each suspension was put into an Eppendorf tube and stored at -85°C until enzymatic assays. Concentrations of microsomal protein were determined according to Lowry et al. (1951). Quantities of total CYP were determined spectrophotometrically at 400-490 nm, on the basis of the difference between readings at 450 and 490 nm. The activity of EROD was examined spectrofluorimetrically; in the presence of NADPH EROD converts the substrate ethoxyresorufin to the fluorescent product resorufin (Chang & Waxman 1998; Nilsen et al. 1998; Rutten et al. 1992). The excitation/emission wavelenghts setting used was 535/585 nm. For details see Siroka et al. (2005).

<u>GSH, GST</u>

Liver samples were homogenised and extracted with phosphate buffer (pH 7.2). Homogenates were centrifuged (10,500 g, 20 min, at 4 °C) and the supernatants were used for determination. Protein concentration was quantified with the Bicinchoninic Acid Protein Assay Kit (Sigma–Aldrich) using bovine serum albumin as a standard. The activity of GST was determined spectrophotometrically at 340 nm using Habig's method (Habig *et al.* 1974). Glutathione was measured spectrophotometrically at 414 nm according to Ellman (1959). Concentrations (nmol GSH.mg⁻¹ of protein) were calculated according to a standard calibration.

<u>Ceruloplasmin</u>

Ceruloplasmin activity was measured according to Ceron & Martinez-Subiela (2004) with slight modifications. The analysis was performed using Varioskan Flash spectral scanning multimode reader (Thermo Scientific). Plasma samples (15 μ l) were mixed with 100 μ l PPD solution (41 mg PPD/25 ml of sodium acetate buffer – pH 5.2) in a 96 well plate and incubated at 37 °C. The absorbance was recorded every 60 s for 30 min at 550 nm. At each point, the absorbance of blank (PPD solution in distilled water) was deducted from the obtained values. The results were expressed as the amount of the absorbance increase per minute \times 10,000.

FRAP

The ferric reducing ability of plasma samples was determined according to Benzie & Strain (1996) including slight modifications. The antioxidants present in the plasma are evaluated through their ability to reduce ferric to ferrous ions at low pH, which causes a bluecoloured ferrous-tripyridyltriazine complex to form. We performed the procedure using a biochemical analyzer Konelab 20i. 5 µl of plasma were added to 150 µl of fresh FRAP reagent (pH 3.6) and the absorbance was measured at 600 nm. The monitoring period lasted for 280 s. Each sample was examined in quadriplicate. The influence of individual plasma absorbance was eliminated by measuring the absorbance of 5 µl plasma mixed with 150 µl of distilled water and substracting the values from the FRAP results. Final FRAP values were obtained by comparing the absorbances of test reaction mixtures with those containing ferrous ions in known concentrations.

Histological examination

Samples of liver, skin, gills, spleen, head kidney and caudal kidney of four fish from the control group and each concentration tested were fixed in buffered 10% neutral formalin and treated for histological examination (H&E).

Determination of prochloraz in water

Gas chromatography with ion trap mass spectrometry (GC/MS) was used for determination of the compound. Sample preparation was based on simple liquid-liquid extraction into hexane. Separation, identification and quantification of prochloraz were based on the GC/MS method described by Charlton and Jones (2007). Gas chromatograph Varian 450-GC with Varian 220-MS ion trap mass spectrometer and VF-5ms ($30 \text{ m} \times 0.25 \text{ mm}$) column were used for the separation of prochloraz. Detection limit (3σ) was $1 \mu \text{g.L}^{-1}$. Expanded uncertainty was 7% on condition that coefficient of expansion is k = 2.

Statistical analysis

Data were evaluated for analysis of variance (ANOVA– Tukey Test) using Unistat 5.1 software. Spearman's rank correlation test was used to find out correlation between CYP and EROD and between GSH and GST. All data are reported as mean ± standard deviation obtained from the data of individual fish sampled.

RESULTS

Biometric indices

A significant increase in HSI (Figure 1) was found in fish exposed to prochloraz of 0.15 and 0.38 mg.L⁻¹ (p<0.01). No significant changes in KI were revealed in pesticide treated fish when compared to the control.

Haematological profile

There was a significant decrease (Figure 2) in red blood cell count in fish exposed to prochloraz of 0.05 and 0.15 mg.L⁻¹ (p<0.05), however, the decline in fish treated with concentration of 0.38 mg.L⁻¹ was not significant. Other haematological indices (WBC, PCV, Hb, MCV, MCH and MCHC) were not significantly affected by the exposure.

Biochemical profile

A decline in plasma TP (p<0.05), ALT, Na⁺ and Ca (p<0.01) was revealed in fish exposed to prochloraz of 0.38 mg.L⁻¹ when compared to control fish whereas plasma potassium increased in all prochloraz treated groups (p<0.01) (Tab. 1). Other indices were not significantly influenced by the exposure.

<u>XME</u>

Cytochrome P450 (Figure 3) and ethoxyresorufin-Odeethylase activity (Figure 4) were induced (p<0.05) by prochloraz of 0.15 and 0.38 mg.L⁻¹, with a significant (p<0.01) Spearman's correlation (r = 0.49) between the indices. Activity of GST (Figure 5) increased significantly in all groups exposed to the formulation

Fig. 1. Hepatosomatic index of the carps after 28-days exposure to Spartakus (prochloraz 450 g.L⁻¹)

1 = control fish; 2–4 = fish exposed to prochloraz (2 = 0.05 mg.L⁻¹; 3 = 0.15 mg.L⁻¹; 4 = 0.38 mg.L⁻¹), n = 30 a, b, c = different alphabetic letters differ significantly (p<0.01) Median = Middle line of the box; Lower (Upper) Quartile = Bottom (Top) line of the box; Lower (Upper) whisker = Lower (Upper) adjacent value (p<0.05), GSH (Figure 6) content showed a significant rise (p<0.05) in fish treated with prochloraz of 0.38 mg.L⁻¹. Spearman's correlation (r=0.38) between the indices was significant (p<0.01).

Ceruloplasmin activity

In comparison to the control, ceruloplasmin activity was significantly (p<0.05) increased in fish exposed to prochloraz of 0.38 mg.L⁻¹ (Figure 7).

FRAP

FRAP was observed to decrease significantly (p<0.05) in fish treated with prochloraz of 0.38 mg.L⁻¹ (Figure 8).

Histological examination

The activity of skin mucous cells decreased in fish treated with prochloraz of 0.38 mg.L⁻¹ whereas venostasis and desquamation of the respiratory epithelium was found in all pesticide exposed fish. No histological changes were detected in samples of hepatopancreas, spleen, head kidney and caudal kidney.

DISCUSSION

Biometric indices

Hepatosomatic index is used to indicate exposure of fish to pollutants. Its value is influenced by e.g. season, diseases, sex, and storing reserves (glycogen) (van der Oost *et al.* 2003; Svobodova 1977). An elevation of relative liver weights has been reported to be accompanied by hyperplasia and hypertrophy of liver cells in fish captured in polluted sites or exposed to pollutants (Slooff *et al.* 1983; Poels *et al.* 1980), as well as increased activities of xenobiotic biotransformation enzymes (Haluzova *et al.* 2009; Stephensen *et al.* 2000).

Fig. 2. Red blood cell count [T.L⁻¹] of the carps after 28-days exposure to Spartakus (prochloraz 450 g.L⁻¹)
1 = control fish; 2–4 = fish exposed to prochloraz
(2 = 0.05 mg.L⁻¹; 3 = 0.15 mg.L⁻¹; 4 = 0.38 mg.L⁻¹), n = 17–19
a, b = different alphabetic letters differ significantly (p<0.05)
Median = Middle line of the box; Lower (Upper) Quartile = Bottom (Top) line of the box; Lower (Upper) whisker = Lower (Upper) adjacent value

Fig. 3. CYP content [nmol.mg⁻¹micros. protein] in carp liver after 28-days exposure to Spartakus (prochloraz 450 g.L⁻¹) 1 = control fish; 2–4 = fish exposed to prochloraz (2 = 0.05 mg.L⁻¹; 3 = 0.15 mg.L⁻¹; 4 = 0.38 mg.L⁻¹), n = 29–30 a, b = different alphabetic letters differ significantly (*p*<0.05) Median = Middle line of the box; Lower (Upper) Quartile = Bottom (Top) line of the box; Lower (Upper) whisker = Lower (Upper) adjacent value

Fig. 5. GST activity [nmol.min⁻¹.mg⁻¹ protein] in carp liver after 28-days exposure to Spartakus (prochloraz 450 g.L⁻¹) 1 = control fish; 2–4 = fish exposed to prochloraz (2 = 0.05 mg.L⁻¹; 3 = 0.15 mg.L⁻¹; 4 = 0.38 mg.L⁻¹), n = 30 a, b, c, d = different alphabetic letters differ significantly (p<0.05)

Median = Middle line of the box; Lower (Upper) Quartile = Bottom (Top) line of the box; Lower (Upper) whisker = Lower (Upper) adjacent value

Haematological profile, biochemical profile

The decline in red blood cell count in fish has been shown after exposure to several pesticides under subchronic conditions (Jee *et al.* 2005; Mikula *et al.* 2008). It can be caused by either a decline in erythropoiesis or increased erythocyte destruction induced by the pesticide or both. The effect of the exposure did not manifest statistically significantly in the highest concentration tested owing to high variability among test specimens. However, the significant increase (p<0.01) in plasma potassium in all exposed groups indicates that the changes originated from cell destruction, as potassium is a major intracellular ion. It is possible that

Fig. 4. EROD activity [pmol.min⁻¹.mg⁻¹ micros. protein] in carp liver after 28-days exposure to Spartakus (prochloraz 450 g.L⁻¹) 1 = control fish; 2–4 = fish exposed to prochloraz (2 = 0.05 mg.L⁻¹; 3 = 0.15 mg.L⁻¹; 4 = 0.38 mg.L⁻¹), n = 29–30 a, b = different alphabetic letters differ significantly (*p*<0.05) Median = Middle line of the box; Lower (Upper) Quartile = Bottom (Top) line of the box; Lower (Upper) whisker = Lower (Upper) adjacent value

Fig. 6. GSH content [nmol.mg⁻¹ protein] in carp liver after 28-days exposure to Spartakus (prochloraz)

1 = control fish; 2–4 = fish exposed to prochloraz (2 = 0.05 mg.L⁻¹; 3 = 0.15 mg.L⁻¹; 4 = 0.38 mg.L⁻¹), n = 29–30 a, b = different alphabetic letters differ significantly (p<0.05) Median = Middle line of the box; Lower (Upper) Quartile = Bottom (Top) line of the box; Lower (Upper) whisker = Lower (Upper) adjacent value

the gill impairment releaved in prochloraz treated fish contributed to a disorder in selected extracellular ions (statistically significant decline in sodium and calcium) and the rise in potassium acted partially as a compensation mechanism. Transitory releases of potassium from intracellular fluid can occur also in an attempt to maintain blood osmolarity (Folmar 1993). The level of total proteins has a tendency to decrease in fish after a long-term exposure to pollutants (Svobodova *et al.* 1994). The decline in ALT may originate from depletion of the enzyme. However, no histological signs of hepatic damage were detected, as well as other indices of hepatic function were not significantly affected by

Fig. 7. Ceruloplasmin activity [increase in absorbance per min ×10,000] in carp liver after 28-days exposure to Spartakus (prochloraz 450 g.L⁻¹)

1 = control fish; 2–4 = fish exposed to prochloraz (2 = 0.05 mg.L⁻¹; 3 = 0.15 mg.L⁻¹; 4 = 0.38 mg.L⁻¹), n = 12–15 a, b = different alphabetic letters differ significantly (p<0.05) Median = Middle line of the box; Lower (Upper) Quartile = Bottom (Top) line of the box; Lower (Upper) whisker = Lower

(Upper) adjacent value

Fig. 8. FRAP value [Fe²⁺ equivalent µmol.L⁻¹] in carp plasma after 28-days exposure to Spartakus (prochloraz 450 g.L⁻¹) 1 = control fish; 2–4 = fish exposed to prochloraz (2 = 0.05 mg.L⁻¹; 3 = 0.15 mg.L⁻¹; 4 = 0.38 mg.L⁻¹), n = 14 a, b = different alphabetic letters differ significantly (*p*<0.05) Median = Middle line of the box; Lower (Upper) Quartile = Bottom (Top) line of the box; Lower (Upper) whisker = Lower (Upper) adjacent value

Tab 1	. Biochemical	indices in common	carp after	28-days exposure	to Spartakus	(prochloraz 450 g.L-	·1)
-------	---------------	-------------------	------------	------------------	--------------	----------------------	-----

Indice	Unit	Control –	Prochloraz concentration [mg.L ⁻¹]			
			0.05	0.15	0.38	
glc	[mmol.L ⁻¹]	4.85±1.19	5.26±1.62	4.28±1.79	4.33±0.90	
ТР	[g.L ⁻¹]	29.19±2.40 ^a	29.59±2.33ª	28.44±1.96 ^a	24.29±5.60 ^b	
alb	[g.L ⁻¹]	9.12±0.86	9.47±1.50	8.47±2.10	8.02±2.39	
ALT	[µkat.L ⁻¹]	1.32±0.30 ^{ab}	1.34±0.34 ^a	0.96±0.24 ^{bc}	0.78±0.42 ^c	
AST	[µkat.L ⁻¹]	1.67±0.71	1.38±0.32	1.60±1.06	1.97±1.15	
TAG	[mmol.L ⁻¹]	2.93±0.62	2.99±0.62	2.65±0.65	2.54±0.84	
LDH	[µkat.L ⁻¹]	2.16±1.93	1.42±0.70	1.63±2.12	2.56±2.48	
lactate	[mmol.L ⁻¹]	2.37±2.31	3.62±2.33	2.27±1.39	1.58±1.08	
Na+	[mmol.L ⁻¹]	142.58±1.73 ^a	142.38±2.96ª	140.25±2.38 ^{ab}	137.8±2.85 ^b	
K+	[mmol.L ⁻¹]	2.91±0.35 ^a	3.62±0.41 ^b	3.43±0.26 ^b	3.53±0.31 ^b	
Са	[mmol.L ⁻¹]	2.32±0.12 ^a	2.34±0.18 ^a	2.21±0.09 ^a	2.00±0.17 ^b	
Cl-	[mmol.L ⁻¹]	108.27±1.91	110.38±1.79	106.71±2.56	108.12±2.64	
Р	[mmol.L ⁻¹]	2.60±0.68	2.26±0.46	2.30±0.53	1.94±0.42	

a, b, c = different alphabetic letters differ significantly at p < 0.01, excluding TP (p < 0.05); n = 12–13

prochloraz, although some changes occured (a slight decline in albumin, a minor increase in AST).

<u>XME</u>

Prochloraz was found to induce cytochrome P4501A (CYP1A) protein and the catalytic activity of EROD *in vitro* after 24-h exposure of rainbow trout hepatocyte culture to 1.0 μ M prochloraz. Higher prochloraz concentrations induced only CYP1A above control levels, but not EROD activity. *In vivo* exposure of juvenile rain-

bow trout *O. mykiss* to 0.27 μ M prochloraz resulted in an induction of CYP1A and EROD after 7 and 14 days (Sturm *et al.* 2001). Babin *et al.* (2005) reported that prochloraz activated CYP1A determined as EROD activity in a concentration-dependent way, as well as enhanced expression of CYP1A mRNA using the rainbow trout liver cell line, RTL-W1. Snegaroff & Bach (1989) added prochloraz to the incubation medium of rainbow trout liver microsomal suspension and reported inhibited EROD activity *in vitro*. Ethoxyresorufin-O-deethylase activity was induced in a transient manner after 7-day exposure of *Gasterosteus aculeatus* to 50 and 100 µg.L⁻¹ prochloraz. Fish exposed to 500 µg.L⁻¹ exhibited significant induction of EROD after 7 and 14 days. After 7 days of depuration, following 2 weeks exposure, no significant difference was observed between exposed and unexposed groups (Sanchez *et al.* 2008). In our experiment, CYP concentration and EROD activity were found to rise after 28-day exposure to prochloraz of 150 and 380 µg.L⁻¹ but not in 50 µg.L⁻¹.

Bach & Snegaroff (1989) studied in vivo induction of XME in rainbow trout using various experimental designs. When the fish were killed 24 hours after i. p. administration of prochloraz, cytochrome P450 increased with increasing dose of prochloraz to a maximum around 100 mg.kg⁻¹. EROD activity was significantly risen in exposed fish, too. Hepatic glutathione-S-transferase was not significantly affected. In fish fed with prochloraz-sprayed pellets for 7 days, with euthanasia 24 hours after the last feeding, liver concentration of CYP and GST activity were unchanged, EROD activity significantly declined. In a time course study, the liver CYP of trouts injected with prochloraz increased significantly during 8 days of observation and EROD activity was first significantly inhibited (1 and 2 days after administration) and then returned to control levels, GST was unchanged. The authors explained variations in the activities of XME partially by different experimental temperatures of water (18; 7; 2 °C).

After a single i. p. injection of prochloraz 100 mg. kg⁻¹ b.w., CYP increased for 10 days and maintained at a higher level till the end of observation period (21 days). The difference from control was statistically significant on day 10 and 21. EROD increased 4 days after dosing with prochloraz and then returned to control level (Snegaroff & Bach,1989).

Biotransformation of prochloraz was reported in rainbow trout O. mykiss with mainly glucuronide conjugates (Debrauwer et al. 2001). The presence of glucuronide conjugates in rainbow trout was detected also by Cravedi et al. (2001) both in vivo and in vitro. For gill, fat, brain and carcasses, residue levels of prochloraz were significantly higher in males than in females. Sanchez et al. (2008) observed an increase in GST activity in G. aculeatus after 7 and 14-day exposure to prochloraz of 100 and 500 µg.L-1, and after 14 days the increase was found also in the concentration of 10 µg.L⁻¹. The induction persisted also after 1 week depuration in clean water when GST activity rose also in fish previously exposed to 50 µg.L⁻¹. In our experiment, the activity of GST increased significantly in all pesticide treated fish, however, GSH content was enhanced in the highest concentration tested. In the above mentioned study, GSH declined in prochloraz of 100 and 500 µg.L⁻¹ after 1-week exposure. The enhanced activity of hepatic glutathione-S-transferase in our fish relates to intensive metabolization of prochloraz. There is also glutathione-S-transferase exhibiting activity similar to

glutathione peroxidases (Slatinska *et al.* 2008). The different results in GSH content could be caused by different length of the exposure period, the longer period could enable adaptation of the fish to the substance and synthesis of new glutathione molecules.

Ceruloplasmin activity

Many pesticides have been shown to induce oxidative stress in fish (Slaninova et al. 2009). Mechanisms of antioxidant defences include enzyme systems that act to remove ROS, low-molecular-weight compounds that directly scavenge ROS, and proteins that act to sequester pro-oxidants, particularly iron and copper (Di Giulio & Meyer 2008). Ceruloplasmin, which binds 95% of circulating copper, has multiple functions which include transport of copper, ferroxidase activity, modulation of coagulation, angiogenesis, inactivation of biogenic amines and defence against oxidative stress. However, also prooxidative activities of ceruloplasmin have been reported (Shukla et al. 2006). Ceruloplasmin is an "acute-phase reactant" participating in inflammatory responses (Bielli & Calabrese 2002). The increase of ceruloplasmin activity was probably connected with tissue impairment revealed by the histological examination. Ceruloplasmin activity was found to increase in O. mykiss after a single i.p. injection of lindan (Dunier et al. 1994). The activity was increased after 7, 14 and 21 days, and was observed to decline after 28 days. Perca flavescens caught in metal and PCB contaminated areas showed a significant rise in head kidney ceruloplasmin activity (Dautremepuits et al. 2009). Although ceruloplasmin exhibits antioxidant activities, antioxidant capacity of plasma represented by its reducing ability significantly declined in the prochloraz concentration which caused a significant enhancement of the ceruloplasmin activity in carp.

FRAP

Ferric reducing ability of plasma is a non-specific test, which measures the ferric-to-ferrous iron reduction in the presence of antioxidants. The antioxidant compounds contributing to the ferric reducing ability of plasma are uric acid (60%), ascorbate (15%), proteins (10%), alpha-tocopherol (5%), bilirubin (5%), and other unknown antioxidants (5%) (Regano *et al.* 2008). The FRAP assay does not measure the SH-group-containing antioxidants (Cao & Prior 1998). Dabrowski *et al.* (2004) reported a significant decline of FRAP in *O. mykiss* in sequel to a decrease in water oxygen saturation level, the decline was not affected by either enhanced or lowered dietary supplementation of vitamin C.

Histological examination

An increased activity of skin mucous cells is usually observed in fish owing to chemical irritation. The mucus serves a protective role and reduces the hydrodynamic resistance to swimming (Kleinow *et al.* 2008). Thus, depression of the mucus production is a considerable disadvantage for the specimen. Histopathological founding in gills is a non-specific sign of the polluted aquatic environment. The effects of toxicants manifest as interaction with the ion-transporting mechanism of the gills and increased permeability of the branchial epithelia to water and ions (Wendelaar Bonga & Lock 2008).

In conclusion, the subchronic exposure of common carp to a prochloraz based formulation influenced many parameters tested, including HSI, xenobitic metabolizing enzymes, selected plasma indices and red blood cell count, affected antioxidant activities and caused minor histological impairment of the test fish.

ACKNOWLEDGEMENTS

This research was supported by the Ministry of Education, Youth and Sports of the Czech Republic (MSM 6215712402). The authors thank Dr. Leszek Guz for inspiration.

REFERENCES

- 1 Andersen HR, Vinggaard AM, Rasmussen TH, Gjermandsen IM, Bonefeld-Jorgensen EC (2002). Effects of currently used pesticides in assays for estrogenicity, androgenicity, and aromatase activity *in vitro*. Toxicol Appl Pharmacol. **179**: 1–12.
- 2 Ankley GT, Jensen KM, Durhan EJ, Makynen EA, Butterworth BC, Kahl MD, Villeneuve DL, et al. (2005). Effects of two fungicides with multiple modes of action on reproductive endocrine function in the fathead minnow (*Pimephales promelas*). Toxicol Sci. 86: 300–308.
- 3 Bach J, Snegaroff J (1989). Effects of the fungicide prochloraz on xenobiotic metabolism in rainbow trout: *in vivo* induction. Xenobiotica. **19**: 1–9.
- 4 Babin M, Casado S, Chana A, Herradon B, Segner H, Tarazona JV, Navas JM (2005). Cytochrome P4501A induction caused by the imidazole derivative prochloraz in a rainbow trout cell line. Toxicol in vitro. **19**: 899–902.
- 5 Benzie IFF, Strain JJ (1996). The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem. **239**: 70–76.
- 6 Bielli P, Calabrese L (2002). Structure to function relationships in ceruloplasmin: a 'moonlighting' protein. Cell Mol Life Sci. **59**: 1413–1427.
- 7 Brande-Lavridsen N, Christensen-Dalsgaard J, Korsgaard B (2008). Effects of prochloraz and ethinylestradiol on sexual development in *Rana temporaria*. J Exp Zool Comp Exp Biol. **309A**: 389–398.
- 8 Cao G, Prior RL (1998). Comparison of different analytical methods for assessing total antioxidant capacity of human serum. Clin Chem. **44**: 1309–1315.
- 9 Ceron JJ, Martinez-Subiela S (2004). An automated spectrophotometric method for measuring canine ceruloplasmin in serum. Vet Res. **35**: 671–679.
- 10 Chang TKH, Waxman DJ (1998). Enzymatic analysis of cDNAexpressed human CYP1A1, CYP1A2, and CYP1B1 with 7-ethoxyresorufin as a substrate. In: Phillips, IR, Shephard EA, editors : Methods in molecular biology. Vol. 107: Cytochrome P450 protocols. Humana press Inc., Totowa, NJ, p. 103–109.
- 11 Charlton AJA, Jones A (2007). Determination of imidazole and triazole fungicide residues in honeybees using gas chromatography-mass spektrometry. J Chromatogr A. **1141**: 117–122.

- 12 Cravedi JP, Boudry G, Baradat M, Rao D, Debrauwer L (2001). Metabolic fate of 2,4-dichloroaniline, prochloraz and nonylphenol diethoxylate in rainbow trout: a comparative *in vivo/in vitro* approach. Aquat Toxicol. **53**: 159–172.
- 13 Dabrowski K, Lee KJ, Guz L, Verlhac V, Gabadaun J (2004). Effects of dietary ascorbic acid on oxygen stress (hypoxia or hyperoxia), growth and tissue vitamin concentrations in juvenile rainbow trout (*Oncorhynchus mykiss*). Aquaculture. **233**: 382–392.
- 14 Dautremepuits C, Marcogliese DJ, Gendron AD, Fournier M (2009). Gill and head kidney antioxidant processes and innate immune system responses of yellow perch (*Perca flavescens*) exposed to different contaminants in the St. Lawrence River, Canada. Sci Total Environ. **407**: 1055–1064.
- 15 Debrauwer L, Rathahao E, Boudry G, Baradat M, Cravedi JP (2001). Identification of the major metabolites of prochloraz in rainbow trout by liquid chromatography and tandem mass spectrometry. J Agr Food Chem. 49: 3821–3826.
- 16 Di Giulio RT, Meyer JN (2008). Reactive oxygen species and oxidative stress. In: Di Giulio RT, Hinton DE, editors. The Toxicology of Fishes. Boca Raton: CRC Press, Taylor and Francis Group. p. 172–324.
- 17 Dunier M, Siwicki AK, Scholtens J, Molin SD, Vergnet C, Studnicka M (1994). Effects of lindan exposure on rainbow trout (Oncorhynchus mykiss) immunity; III. Effect on nonspecific immunity and B lymphocyte functions. Ecotox Environ Safe. 27: 324–334.
- 18 Éllman GL (1959). Tissue sulfhydryl groups. Arch Biochem Biophys. 82: 70-77.
- 19 Folmar LC (1993). Effects of chemical contamination on blood chemistry of teleost fish: a bibliography and synopsis of selected effects. Environ Toxicol Chem. **12**: 337–375.
- 20 Gangolli S, editor (1999). The dictionary of substances and their effects, Vol. 6, 2nd edition, Cambridge: Royal society of chemistry, p 497–499.
- 21 Habig WH, Pabst MJ, Jakoby WB (1974). Glutathione S-transferases. First enzymatic step in mercapturic acid formation. J Biol Chem. **249**: 7130–7139.
- 22 Haluzova I, Blahova J, Smejkalova L, Kruzikova K, Havelkova M, Groch L, Modra H, *et al.* (2009). Effects of subchronic exposure to Successor[®] 600 (pethoxamid 600 g L⁻¹) on common carp *Cyprinus carpio*. Neuroendocrinol Lett. **30** (Suppl. 1): 230–235.
- 23 Jee JH, Masroor F, Kang JC (2005). Responses of cypermethrininduced stress in haematological parameters of Korean rockfish, *Sebastes schlegeli* (Hilgendorf). Aquac Res. **36**: 898–905.
- 24 Kato Y, Flodstrom S, Warngard L (1998). Initiation and promotion of altered hepatic foci in female rats and inhibition of cell-cell communication by the imidazole fungicide prochloraz. Chemosphere. **37**: 393–403.
- 25 Kinnberg K, Holbech H, Petersen GI, Bjerregaard P (2007). Effects of the fungicide prochloraz on the sexual development of zebrafish (*Danio rerio*). Comp Biochem Phys C. **145**: 165–170.
- 26 Kleinow KM, Nichols JW, Hayton WL, McKim JM, Barron MG (2008). Toxikokinetics in fishes. In: Di Giulio RT, Hinton DE, editors. The Toxicology of Fishes. Boca Raton: CRC Press, Taylor and Francis Group. p.55–152.
- 27 Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951). Protein measurement with the folin phenol reagent. J Biol Chem. **193**: 265–275.
- 28 Mikula P, Modra H, Nemethova D, Groch L, Svobodova Z (2008). Effects of subchronic exposure to LASSO MTX (alachlor 42% W/V) on hematological indices and histology of the common carp, *Cyprinus carpio* L. Bull Environ Contam Toxicol. 81: 475–479.
- 29 Nilsen BM, Berg K, Goksøyr A (1998). Induction of cytochrome P450 1A (CYP1A) in fish. A biomarker for environmental pollution. In: Philips IR, Shephard EA, editors: Methods in molecular Biology. Vol. 107: Cytochrome P450 protocols. Humana press Inc., Totowa, NJ, p. 423–438.
- 30 Poels CLM, van der Gaag MA, van der Kerkhoff JFJ (1980). An investigation into the long-term effects of Rhine water on rainbow trout. Water Res. **14**: 1029–1035.
- 31 Regano N, Iorio EL, Guglielmi A, Mazzuoli S, Francavilla A, Fregnan S, Leogrande G, *et al.* (2008). The assessment of oxidative stress in clinical practice and its importance in nutrition. Nutr Ther Metabol. **26**: 149–162.

- 32 Rutten AAJJL, Falke HE, Catsburg JF, Wortelboer HM, Blaauboer BJ, Doorn L, et al (1992). Interlaboratory comparison of microsomal ethoxyresorufin and pentoxyresorufin O-dealkylation determinations: standardization of assay conditions. Arch Toxicol. **66**: 237–244.
- 33 Saglio P, Bretaud S, Rivot E, Olsen KH (2003). Chemobehavioral changes induced by short-term exposures to prochloraz, nicosulfuron, and carbofuran in goldfish. Arch Environ Contam Toxicol. 45: 512–524.
- 34 Sanchez W, Piccini B, Porcher J (2008). Effect of prochloraz fungicide on biotransformation enzymes and oxidative stress parameters in three-spined stickleback (*Gasterosteus aculeatus* L.). J Environ Sci Heal B. **43**: 65–70.
- 35 Shukla N, Maher J, Masters J, Angelini GD, Jeremy JY (2006). Does oxidative stress change ceruloplasmin from a protective to a vasculopathic factor? Atherosclerosis. **187**: 238–250.
- 36 Siroka Z, Krijt J, Randak T, Svobodova Z, Peskova G, Fuksa J, et al (2005). Organic pollutant contamination of River Elbe as assessed by biochemical markers. Acta Vet Brno. 74: 293–303.
- 37 Slaninova A, Smutna M, Modra H, Svobodova Z (2009). A review: Oxidative stress in fish induced by pesticides. Neuroendocrinol Lett. **30** (Suppl. 1): 2–12.
- 38 Slatinska I, Šmutna M, Havelkova M, Svobodova Z (2008). Review article: Biochemical markers of aquatic pollution in fish – glutathione-S-transferases. Folia Vet. 52: 129–134.
- 39 Slooff W, van Kreijl CF, Baars AJ (1983). Relative liver weights and xenobiotic-metabolizing enzymes of fish from polluted surface waters in the Netherlands. Aquat Toxicol. 4: 1–14.
- 40 Snegaroff J, Bach J (1989). Effects of the fungicide prochloraz on xenobiotic metabolism in rainbow trout: inhibition *in vitro* and time course of induction *in vivo*. Xenobiotica. **3**: 255–267.
- 41 Stephensen E, Svavarsson J, Sturve J, Ericson G, Adolfsson-Erici M, Forlin L (2000). Biochemical indicators of pollution exposure in shorthorn sculpin (*Myoxocephalus scorpius*), caught in four harbours on the southwest coast of Iceland. Aquat Toxicol. **48**: 431–442.

- 42 Sturm A, Cravedi JP, Perdu E, Baradat M, Segner H (2001). Effects of prochloraz and nonylphenol diethoxylate on hepatic biotransformation enzymes in trout: A comparative *in vitro/in vivo* assessment using cultured hepatocytes. Aquat Toxicol. **53**: 229–245.
- 43 Svobodova Z (1977). Hepatopankreas kapra: vztah hmotnosti k obsahu glykogenu. [(The hepatopancreas of the carp: the relation of weight to glycogen content)]. Bull RIFCH. **13**: 22–24.
- 44 Svobodova Z, Pravda D, Palackova J (1991). Unified methods of haematological examination of fish. Manuals of Research Institute of Fish Culture and Hydrobiology, Vodnany, Czech Republic.
- 45 Svobodova Z, Vykusova B, Machova J (1994). The effects of pollutants on selected haematological and biochemical parameters in fish. In: Muller R, Lloyds R, editors. Sublethal and chronic effects of pollutants on freshwater fish. 1st ed. Oxford: Fishing News Books. p. 39–52.
- 46 van der Oost R, Beyer J, Vermeulen NPE (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Phar. **13**: 57–149.
- 47 Vinggaard AM, Nellemann C, Dalgaard M, Jorgensen EB, Andersen HR (2002). Antiandrogenic effects *in vitro* and *in vivo* of the fungicide prochloraz. Toxicol Sci. **69**: 344–353.
- 48 Vinggaard AM, Christiansen S, Laier P, Poulsen ME, Breinholt V, Jarfelt K, Jacobsen H, et al (2005). Perinatal exposure to the fungicide prochloraz feminizes the male rat offspring. Toxicol Sci. 85: 886–897.
- 49 Wendelaar Bonga SE, Lock RAC (2008). The osmoregulatory system. In: Di Giulio RT, Hinton DE, editors. The Toxicology of Fishes. Boca Raton: CRC Press, Taylor and Francis Group. p. 401–416.
- 50 Zarn JA, Bruschweiler BJ, Schlatter JR (2003). Azole fungicides affect mammalian steroidogenesis by inhibiting sterol 14*a*-demethylase and aromatase. Environ Health Perspect. **111**: 255–261.