Aerobic exercise has beneficial impact on atherogenic index of plasma in sedentary overweigh and obese women

Zuzana Stránská¹, Martin Matoulek¹, Zdeněk Vilikus², Štěpán Svačina¹, Pravoslav Stránský³

- ¹ 3rd Medical Department, 1st Faculty of Medicine, Charles University and General Faculty Hospital in Prague, Czech Republic
- 2 Department of Sport Medicine, 1st Faculty of Medicine, Charles University and General Faculty Hospital in Prague, Czech Republic
- 3 Department of Medical Biophysics, Charles University in Prague, Faculty of Medicine at Hradec Králové, Czech Republic

Correspondence to: Zuzana Stránská, MD. 3rd Medical Department, 1st Faculty of Medicine, Charles University and General Faculty Hospital in Prague U nemocnice 1, 128 08 Praha 2, Czech Republic. TEL: +420224962922; FAX: +420224919780; E-MAIL: zuzana.stranska@vfn.cz

Submitted: 2010-11-10 Accepted: 2011-12-02 Published online: 2011-02-25

Key words: atherogenic index of plasma; obesity; exercise

Neuroendocrinol Lett 2011; 32(1):102-108 PMID: 21407166 NEL320111A11 © 2011 Neuroendocrinology Letters • www.nel.edu

Abstract **OBJECTIVE:** In obese patients, we hypothesized physical exercise (PE) to affect lipids through its intrahepatic fat accumulation-lowering effect, associated with a decrease of total body fat (Fat%) and even weight (Mass).

Design and setting: Thirty seven sedentary, non-diabetic women (BMI median 34.8) from our out-patient department were tested. Elimination criteria: recent weight reduction, lipid-influencing or heart rate-modifying medication.

Participants: 50 entering, 37 finishing, 7 excluded for processing failure, 6 did not fulfill the protocol.

INTERVENTIONS: PE protocol: 60 min supervised trainings, intensity at 65% of VO_2max , modified by the clamp heart rate test. Median of total training hours was 34 during 115 days (median).

Main Outcome Measurements: an effect of PE on total cholesterol (CH), triglycerides (TG), HDL-cholesterol (HDL_C), LDL-cholesterol (LDL_C), index of atherogenity (IA), atherogenic index of plasma (AIP), maximum peak oxygen consumption (VO₂max), Mass, body mass index (BMI), waist circumference (Waist) and Fat%.

RESULTS: Statistically significant differences at start (_s) and the end (_e) of PE (p<0.05): AIP -0.049, Mass -3.6 (kg), BMI -1.7 (kg/m²), Waist -2.5 (cm), Fat% -2.5, VO₂max 2.92 (L.min⁻¹kg⁻¹).

Correlation coefficients, Pearson's between Gaussian distributed (Gd-v) variables and Spearman's (non Gd-v) statistically significant (p<0.05): IA and BMI, IA and Mass, IA and Waist, IA and Fat%, LDL and BMI, LDL and Mass, LDL and Fat%, LDL and Waist, IA and VO₂max, LDL_C and VO₂max.

CONCLUSIONS: PE improves lipid profile towards production of antiatherogenic particles more likely due to changes in anthropometric parameters than in improvement of physical fitness.

INTRODUCTION

Dyslipidaemia of metabolic syndrome (DMS) is a cluster of plasmatic lipid and lipoprotein abnormalities with high atherogenic potential (Ceska 2007). It is simultaneously closely related to insulin resistance and independent on presence of type 2 diabetes mellitus (Adiels et al. 2008). DMS is typically represented by high levels of plasma triglycerides (TG), low levels of high-density lipoprotein cholesterol (HDL_C), the appearance of small, dense, low-density lipoproteins LDL (sdLDL) and HDL (sdHDL) and an adversely high rate of apoprotein B (apoB) and apoprotein A (apoA) (Avramoglu et al. 2006). ApoB plasmatic levels show a strong, positive correlation to the size of sdLDL particles (Tsimihodimos et al. 2007). In case of HDL_C and its heterogeneity, a better indicator of its (anti)atherogenic potential is the value of atherogenic index of plasma {AIP, [log (TG/ HDL_C)]}(Dobiasova 2004). Thus, the components of DMS do not represent isolated pathological findings but heterogeneous units within each subgroup, closely related to each other in many complicated metabolic pathways (Taskinen 2003). In patophysiology of DMS, the liver-overproduction of large triglyceride-rich very low density lipoproteins (VLDL₁) plays the key role (Adiels et al. 2008). Physical exercise (PE) induces a triacylglycerol-lowering effect which basically occurs in three different ways: 1/ Direct impact on key enzymes involved in patophysiology of DMS, especially on skeletal muscle lipoprotein lipase (LPL) activity, is said to be more likely a contributing TG-lowering factor (Magkos 2009). 2/ Peripheral effect: in obese people, oxidation capacity of skeletal muscle for lipids is lower than in lean subjects and inversely associated with the degree of obesity (Hulver et al. 2005). After massive weight loss and during exercise, this phenotype is preserved (Thyfault et al. 2004). 3/ Central effect: Amount of visceral fat mass seems to be the most important factor in high storage of fat in liver (Jakobsen et al. 2007) and directly associates with liver production of VLDL₁ (Fabbrini et al. 2008). Influx of intra-abdominal fat-originated free fatty acids (FFA) into liver is four-times higher in obese than in lean subjects (Magkos 2009). The last three years published studies aimed at the influence of PE on non-alcoholic fatty liver disease (NAFLD) differ in answering the question of how changes in basic anthropometric parameters influence DMS due to regular PE (Devries et al. 2008; Tsekouras et al. 2008). The pathophysiological mechanisms support the theory that PE can influence less insulin-resistance and beta-oxidation of FFA in skeletal muscle than high storage of fat in the liver. In case of DMS we thus hypothesised that the antiatherogenic influence of PE occurs predominantly due to changes in body composition.

METHODS

<u>Subjects</u>

Thirty-seven women (arithmetic mean (M) age 45.0 y, standard deviation (SD) 10.1 y) recruited from our out-patients department were tested. To be eligible for participation, baseline body mass index (BMI = weight in kilograms divided by the square of height in meters) had to be between 25 and 40 kg/m². In addition, all participants were classified at baseline as sedentary, which was defined as reporting exercising less than 2 days a week over the previous 6 months. Participants were excluded if they met any of the following criteria: contraindications for exercise, a health condition that would limit exercise participation, aggressive weight reduction in the past two years which meant more than 10 kilograms per year, using medication that would alter the heart rate response during exercise (e.g. betablockers or any other antiarythmics) or medication affecting lipid metabolism or weight loss (Svacina et al. 2007). As subjects have not been treated for dyslipidaemia, one or a combination of more than one abnormality in lipid metabolism was observed in the cases of twenty-six subjects at baseline. These disorders included an LDL_C concentration above 4.5 mmol/L, an HDL_C concentration below 1.3 mmol/L, a TG concentration above 1.69 mmol/L, total cholesterol (CH) concentration above 5.2 mmol/L, apoprotein B (apoB) concentration above 1.7 mmol/L, index of atherogenity $(IA = [CH - HDL_C/HDL_C])$ above 3, or AIP above 0.11. Diabetics were not included. Ten subjects were treated for arterial hypertension before admission to the project.

Participants were asked not to change their usual eating habits. They completed a detailed medical history and physical examination. All provided written informed consent prior to initiating the study.

<u>Design</u>

The subjects were asked to participate in regular aerobic exercise training. A combination of cycle ergometer, treadmill, elliptical trainer or row trainer was used. One training unit (TU) took 60 min. They were recommended to exercise at least twice a week for a period of approximately 3 months (median 115 d, lower 95% confidence limit (LCL) 108 d, upper 95% confidence limit (UCL) 138 d). Number of TU should exceed 24 (median 36, LCL 34, UCL 36). All training units were to be conducted under the supervision of an experienced instructor in The Recondition Centre of the University Sports Club (RC = spaces built and equipped especially for educating and practicing exercise for overweight and obese people). Intensity of exercise was first set to 65% of peak VO2 max and subsequently modified by CHR. Training intensity in practice was verified by heart-rate monitors (Polar Electro). Before measurements of VO₂ max, subjects were given information about the test and instructed to exercise to their

Tab. 1. Statistical characteristics of variables with Gaussian distribution.

Variable	Arithmetic mean	SEM	Significance
HDL_C_s	1.38	0.05	
HDL_C_e	1.40	0.05	NS
LDL_C_s	3.15	0.13	
LDL_C_e	3.07	0.13	NS
IA_s	2.78	0.13	
IA_e	2.65	0.11	NS
AIP_s	- 0.074	0.032	
AIP_e	- 0.123	0.033	p<0.05
Fat%_s	38.6	0.7	
Fat%_e	36.1	0.8	p<0.05
HR_max_s	167.3	2.1	
HR_max_s	168.6		NS
VO ₂ max_s	25.20	0.62	
VO ₂ max_e	28.12	0.89	p<0.05
Z-score_s	- 0.55	0.11	
Z-score_e	- 0.03	0.15	p<0.05
VO ₂ max%_s	89.2	2.3	
VO ₂ max%_e	99.8	3.2	p<0.05
W_s	157.8	4.3	
W_e	174.2	5.1	p<0.05

Tab. 2. Statistical characteristics of variables with non-Gaussian distribution.

95% LCL

4.70

4.69

Median

4.88

5.05

95% UCL

5.42

5.39

Significance

NS

Variable

CH_s

CH_e

TG_s	1.09	0.99	1.20	
TG_e	1.03	0.83	1.31	NS
TG_HDL_s	0.80	0.72	0.94	
TG_HDL_e	0.73	0.58	0.93	NS
apoB_s	0.91	0.87	1.03	
apoB_e	0.94	0.84	1.03	NS
Mass_s	96.5	89.5	105.2	
Mass_e	92.9	87.7	97.0	p<0.05
Waist_s	103.5	99.0	106.0	
Waist_e	101.0	95.0	105.0	p<0.05
BMI_s	34.8	32.1	37.3	
BMI_e	33.1	31.0	35.9	p<0.05
AST_s	0.44	0.39	0.48	
AST_e	0.40	0.35	0.43	NS
GGT_s	0.32	0.27	0.40	
GGT_e	0.29	0.23	0.40	NS
ALT_s	0.42	0.39	0.48	
ALT_e	0.40	0.36	0.49	NS
uffix _s means before exercise (at the start of the trial)				

SEM = standard error of mean

suffix _s means before exercise (at the start of the trial) sufix_e means after exercise (at the end of the trial)

NS = non-significant

p = p-value

 $HDL_C = high-density lipoprotein cholesterol [mmol/L] LDL_C = low-density lipoprotein cholesterol [mmol/L]$

IA = index of atherogenity [CH – HDL_C/HDL_C] AIP = Atherogenic Index of Plasma [log (TG/HDL-C)]

Fat% = total body fat [%]

HR = maximum reached heart rate (beats per minute) $VO_2max = maximum peak oxygen consumption (L.min⁻¹kg⁻¹)$ Z-score = multiple of normalized standard deviation of VO_2max % VO_2max % = percentage of predicted (optimal) VO_2max value ageand gender-matched due to Selliger's standards created on the Czech population

W = peak power output (watt)

maximum limit. Reaching oxygen uptake via increased workload and a respiratory exchange ratio > 1.00 was used as criteria for the true VO_2 max and this was achieved in all individuals in the present study. Oxycon Delta Jaeger (ergometer Ergoline 900) was used. Nutrient intakes were followed by evaluating a questionnaire once a week so we could see that none of the subjects were on a reduction diet (defined as less than 1790 kcal per day). For all outcomes, the subjects were tested before entering the programme and after finishing it (= after completing at least 24 TU in the RC). Primary outcomes were differences in values of CH, HDL-C, suffix _s means before exercise (at the start of the trial) sufix_e means after exercise (at the end of the trial) 95% LCL = 95% lower confidence limit 95% UCL = 95% upper confidence limit NS = non-significant p = p-value CH = total cholesterol [mmol/L]

TG = triglycerides [mmol/L]

TG_HDL = ratio TG/HDL_C [mmol/L]

apoB = apolipoprotein B [mmol/L]

Mass = total body mass [kg]

Waist = waist circumference [cm]

BMI = Body Mass Index [kg/m²]

AST = aspartat aminotranspherase [mmol/L]

GGT = gamma-glutamyl thanspherase [mmol/L]

ALT = alanine aminotransferase [mmol/L]

LDL-C, TG, IA, AIP, apoB, aspartat aminotranspherase (AST), alanine aminotransferase (ALT) and gammaglutamyl thanspherase (GGT). Fasting plasma samples were performed with standard local procedures. Secondary outcomes were changes in total body mass in kg (Mass), BMI, percentage of total body fat (Fat%), waist circumference in cm (Waist). Weight was measured on medical scales to the nearest 0.1 kg. Participants were weighed in undergarments. Height was measured with a wall-mounted stadiometer to the nearest 0.5 cm. BMI was calculated [mass (kg)/height² (m²)]. Fat% was measured by bioimpedance (Tanita Body Fat Monitor/Scale TBF-551). Waist was measured by tape measure to the nearest 0.5 cm. Tertiary outcome for assessing change in fitness was peak maximal oxygen consumption (VO₂ max [L.kg⁻¹.min⁻¹]) corresponding Z-score, percentage of its physiological value and peak power output quantified in watts (W).

STATISTICAL METHODS AND RESULTS

For all statistical calculations NCSS 2007 (Hintze 2007) was used. Twenty paired variables were analyzed in this study. At the very beginning a distribution of each vari-

able was tested for normality. H_0 could not be rejected in 10 variables; in the 10 variables H_0 was rejected. For the variables with Gaussian distribution of differences an arithmetic mean was used as a measure of location and standard error of mean (SEM) as a measure of variability. For the variables with non-Gaussian distribution median was used as a measure of location. Lower confidence limit (LCL) and upper confidence limit (UCL) were used as measures of variability. Values at the end of study were tested against the same variables values at the start of the study. Depending on the distribution, either paired *t*-test or Mann-Whitney test were used.

Tab. 3. A: Correlations between anthropometric parameters and the parameters of lipid metabolism and AST, GGT and ALT at the start of the trial.

	AIP_s	LDL_s	IA_s	CH_s	AST_s	GGT_s	ALT_s
Mass_s	0.072436	0.365979 Δ	0.393138 Δ	0.127097 ∆	0.412831	0.158113	0.23924
p-value	0.670071	0.025902 *	0.01608 *	0.453487	0.011105 *	0.349967	0.153839
BMI_s	0.009249	0.493477	0.446293	0.31525	0.477544	0.241514	0.266002
<i>p</i> -value	0.956673	0.001912 *	0.005627 *	0.057361 *	0.0028 *	0.149848	0.11154
Fat%_s	- 0.047074	0.451648 Δ	0.352132 Δ	0.326822 Δ	0.359494	0.218431	0.054922
p-value	0.782036	0.005016 *	0.032565 *	0.048343 *	0.028866 *	0.194009	0.746804
Waist_s	0.106194	0.41773	0.415136	0.260872	0.389751	0.26002	0.346266
<i>p</i> -value	0.531608	0.010095 *	0.01062 *	0.118877	0.0171 *	0.120131	0.035782 *

Tab. 3. B: Correlation between anthropometric parameters and the parameters of lipid metabolism and AST, GGT and ALT.

	AIP_e	LDL_e	IA_e	CH_e	AST_e	GGT_e	ALT_e
Mass_e	0.285443	0.340637∆	0.530532 Δ	0.203426 Δ	0.262371	0.384698	0.062411
p-value	0.0868	0.039108 *	0.000731 *	0.227202	0.116697	0.018724 *	0.713649
BMI_e	0.253468	0.50913	0.580206	0.390242	0.237776	0.428639	- 0.012519
p-value	0.1301	0.00129 *	0.000167 *	0.016949 *	0.15645	0.008122 *	0.941376
Fat%_e	0.31094	0.511051 Δ	0.684909 Δ	0.396995 Δ	0.106844	0.496351	0.004689
p-value	0.061042	0.001228 *	0.000003 *	0.01498 *	0.529083	0.001781 *	0.978028
Waist_e	0.270296	0.332602	0.497059	0.206796	0.347878	0.419263	0.179973
<i>p</i> -value	0.105664	0.044286 *	0.00175 *	0.21943	0.034873 *	0.009795 *	0.286473

suffix _s means before exercise (at the start of the trial)

sufix_e means after exercise (at the end of the trial)

symbol * shows statistically significant values at least at 5% probability

symbol Δ shows Pearson's correlation coefficient between variables with Gaussian distribution (the rest are the Spearman's correlation coefficients)

Mass = total body mass [kg]

BMI = Body Mass Index [kg/m²]

Fat% = total body fat [%]

Waist = waist circumference [cm]

AIP = Atherogenic Index of Plasma [log (TG/HDL-C)]

LDL = low-density lipoproteins [mmol/L] IA = index of atherogenity [CH – HDL_C/HDL_C]

CH = total cholesterol [mmol/L]

HDL C = HDL cholesterol [mmol/L]

AST = aspartat aminotranspherase [mmol/L]

ALT = alanine aminotransferase [mmol/L]

GGT = gamma-glutamyl thanspherase [mmol/L]

Tab. 4. A: Spearman's correlation coefficients between the parameters of lipid metabolism and AST, GGT and ALT at the start of the trial.

	AST_s	GGT_s	ALT_s
CH_s	0.080779	0.28257	0.157189
<i>p</i> -value	0.634591	0.090162	0.352828
HDL_s	- 0.00101	0.353193	- 0.07036
<i>p</i> -value	0.995266	0.032009 *	0.679016
LDL_s	0.156232	0.147383	0.169081
<i>p</i> -value	0.355804	0.384029	0.317114
TG_s	0.214816	0.209162	0.325299
<i>p</i> -value	0.201674	0.214085	0.04946 *
AIP_s	0.195403	0.069526	0.316021
<i>p</i> -value	0.246451	0.68262	0.056721

Tab. 4. B: Correlation between the parameters of lipid metabolism and AST, GGT and ALT at the end of the trial.

	AST_e	GGT_e	ALT_e
CH_e	0.141221	0.38128	0.066627
p-value	0.404438	0.019893 *	0.695204
HDL_e	0.08453	0.140695	-0.224181
p-value	0.618891	0.406207	0.182241
LDL_e	0.101056	0.334263	0.149401
p-value	0.551756	0.043173 *	0.377482
TG_e	0.071348	0.513796	0.1463
p-value	0.674754	0.001143 *	0.387575
AIP_e	0.018868	0.365362	0.207641
p-value	0.911743	0.026173 *	0.21751

suffix _s means before exercise (at the start of the trial) sufix_e means after exercise (at the end of the trial) symbol * shows statistically significant correlations at least at 5%

probability AIP = Atherogenic Index of Plasma [log (TG/HDL-C)]

LDL = low-density lipoproteins [mmol/L]

LDL = 10W-density inpoproteins [ff CH = total cholesterol [mmol/L]

CH = total cholesterol [mmol/L]

HDL_C = HDL cholesterol [mmol/L]

AST = aspartat aminotranspherase [mmol/L]

ALT = alanine aminotransferase [mmol/L]

GGT = gamma-glutamyl thanspherase [mmol/L]

Measures of location and variability for which differences were significant at least at 5% probability level are given in Tables 1 and 2. Tables 3 to 5 show Pearson's correlation coefficients between variables with Gaussian distribution and Spearman's correlation coefficients between variables with non-Gaussian distribution.

DISCUSSION

To affect lipid metabolism and especially plasmatic levels of HDL-C, high intensity exercise was said to be the dominant factor (Tjonna et al. 2008). The conclusion of (Kraus et al. 2002) showed that it was not high intensity but rather the amount of PE that is the key factor to improve lipids in obese subjects with dyslipidaemia at baseline. In both publications, the improvement in lipids was independently followed by significant weight reduction. The last recommendation of the American College of Sports Medicine (Donnelly et al. 2009) allows that there is a dose-response effect of PE on weight loss and the amount of PE between 150 and 225 minutes per week can be followed by modest weight loss of approximately 2 to 3kg. The design of a PE programme was driven by the idea that we have worked with overweight and obese subjects who have led a sedentary lifestyle their entire lives to date (none of our thirty-seven participants have ever done regular sport or exercise of however racing or recreational level which correlates with below-average % values of VO₂max due to Seliger's standards assessing a Czech population (Macek et al. 1979)). We tried to create a programme that complies with safety criteria which limits both intensity and weekly amount of exercise. Our participants did not have an initial period of several months to adjust to certain higher levels of exercise, as for example in the study of (Kraus et al. 2002). However, all of them continued to engage in regular exercise in RC, even after completing the project (further follow-up is not a subject of this study). This fact leads us to assess the protocol as being sufficiently motivational. Our premise was that the exercise intensities based on heart rate from spiroergometry could not often have been reached and maintained in practice. Each investigation on spiroergometer was then followed by CHR test to regulate the real training heart-rate value. We assumed that due to often high initial motivation of the investigated subjects, better outcomes from spiroergometry are reached. Furthermore, the final heart rate-values recommended for the training programme are too high and unachievable for sedentary and even advanced obese patients to sustain for the first few weeks of exercise. On the other hand frequent indisposition, such as polyarthrosis, muscle weakness, or low fitness per se, could lead to an insufficient performance on spiroergometry so the heart rate recommended for training sessions touches lower limits and the subjects would have been recommended to exercise at lower intensities unnecessarily. CHR represents in fact a test of cardiovascular efficiency based on reversed regulation of work rate intensity by a defined heart rate. The advantage of this method is that an examinate does not have to reach maximum performance, which makes CHR safer for our type of patients. The subjects could be observed for 40 minutes of exercise in contrast to about 10-15 minutes in the case of spiroergometry.

Ratings of subjects' perceived exertion were obtained using the 20-point Borg scale. To reach better results we proposed to shorten the resting pauses to a maximum of 15 days (Slentz *et al.* 2007) and prolong the testing interval to at least 3 months, which, based on current evidence, is the minimum time necessary for a potentially successful lipid-lowering effect of PE (Kraus *et al.* 2002; Tjonna *et al.* 2008; Jakicic *et al.* 2003).

CONCLUSIONS

We have showed that regular aerobic PE significantly decreases AIP. Although there is no significantly lowering effect on HDL_C, we established a significantly positive correlation between IA and all investigated anthropometric characteristics (Mass, BMI, Waist, Fat%) at the beginning, and at the end of the project this relationship becomes stronger. In association with significant changes of body composition after exercise including Mass, we showed a positive correlation between IA and VO₂max at the end of the project. Although the difference between ALT, AST and GGT before and after PA was not statistically significant, significantly positive correlation between GGT and Mass, GGT and BMI, GGT and Waist and GGT and Fat% after PA and also positive correlation between ALT and Waist before entering the protocol, similarly to study (Devries et al. 2008) showing a positive correlation between Waist and both GGT and ALT in relationship to positive correlation of GGT and ALT to hepatic lipid content can allow us to consider the lowering effect of PE on AIP to be a result of a reduced intrahepatic-lipid accumulation.

Competing interests

The authors declare that they have no competing interests.

ACKNOWLEDGEMENTS

This study was supported by the Internal Grant Agency of the Ministry of Health, Czech Republic 8384-3.

REFERENCES

- Adiels M, Olofsson SO, Taskinen MR, *et al.* (2008). Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arterioscler Thromb Vasc Biol. 28(7): 1225–36.
- 2 Avramoglu RK, Basciano H, Adeli K (2006). Lipid and lipoprotein dysregulation in insulin resistant states. Clin Chim Acta. 368(1– 2): 1–19.
- 3 Ceska R (2007). Clinical implications of the metabolic syndrome. Diab Vasc Dis Res. **4** Suppl 3: S2–4.
- 4 Devries MC, Samjoo IA, Hamadeh MJ, *et al.* (2008). Effect of endurance exercise on hepatic lipid content, enzymes, and adiposity in men and women. Obesity (Silver Spring). **16**(10): 2281–8.
- 5 Dobiasova M (2004). Atherogenic index of plasma [log(triglycerides/HDL-cholesterol)]: theoretical and practical implications. Clin Chem. **50**(7): 1113–5.

Tab. 5. A: Correlation between parameters of lipid metabolism and the parameters of physical fitness at the start of the trial.

	VO ₂ max_p_s	W_s
CH_s	– 0.455287 ∆	– 0.491028 Δ
<i>p</i> -value	0.004633 *	0.00203 *
LDL_s	– 0.504977 ∆	– 0.446066 Δ
<i>p</i> -value	0.001435 *	0.005655 *
IA_s	– 0.323499 ∆	– 0.167957 ∆
<i>p</i> -value	0.050807 *	0.320389
AIP_s	0.04909	0.006449
<i>p</i> -value	0.772943	0.969782

Tab. 5. B: Correlation between parameters of lipid metabolism and the parameters of physical fitness at the end of the trial.

	VO ₂ max_p_e	W_e
CH_e	– 0.381805 Δ	– 0.439716 Δ
<i>p</i> -value	0.019709 *	0.006466 *
LDL_e	– 0.48453 Δ	– 0.49262 ∆
<i>p</i> -value	0.002374 *	0.001952 *
IA_e	– 0.575729 ∆	– 0.219895 ∆
<i>p</i> -value	0.000193 *	0.190963
AIP_e	- 0.329935	0.040981
<i>p</i> -value	0.046123 *	0.809693

suffix _s means before exercise (at the start of the trial)

sufix_e means after exercise (at the end of the trial) symbol * shows statistically significant correlations at least at 5% probability

symbol Δ shows Pearson's correlation coefficient between variables with Gaussian distribution (the rest are the Spearman's correlation coefficients)

AIP = Atherogenic Index of Plasma [log (TG/HDL-C)]

LDL = low-density lipoproteins [mmol/L]

IA = index of atherogenity [CH – HDL_C/HDL_C]

CH = total cholesterol [mmol/L]

 $VO_2max = peak maximal oxygen consumption per kilogram body weight [L.min⁻¹.kg⁻¹]$

- 6 Donnelly JE, Blair SN, Jakicic JM, *et al.* (2009). American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc.**41**(2): 459–71.
- 7 Fabbrini E, Mohammed BS, Magkos F, *et al.* (2008). Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease. Gastroenterology. **134**(2): 424–31.
- 8 Hulver MW, Berggren JR, Carper MJ, *et al.* (2005). Elevated stearoyl-CoA desaturase-1 expression in skeletal muscle contributes to abnormal fatty acid partitioning in obese humans. Cell Metab. **2**(4): 251–61.
- 9 Jakicic JM, Marcus BH, Gallagher KI, et al. (2003). Effect of exercise duration and intensity on weight loss in overweight, sedentary women: a randomized trial. JAMA. 290(10): 1323–30.
- 10 Jakobsen MU, Berentzen T, Sorensen TI, *et al.* (2007). Abdominal obesity and fatty liver. Epidemiol Rev. **29**: 77–87.

- 11 Kraus WE, Houmard JA, Duscha BD, *et al.* (2002). Effects of the amount and intensity of exercise on plasma lipoproteins. N Engl J Med. **347**(19): 1483–92.
- 12 Macek M, Seliger V, Vavra J, *et al.* (1979). Physical fitness of the Czechoslovak population between the ages of 12 and 55 years. Oxygen consumption and pulse oxygen. Physiol Bohemoslov. **28**(1): 75–82.
- 13 Magkos F (2009). Basal very low-density lipoprotein metabolism in response to exercise: mechanisms of hypotriacylglycerolemia. Prog Lipid Res. 48(3-4): 171–90.
- 14 Slentz CA, Houmard JA, Johnson JL, *et al.* (2007). Inactivity, exercise training and detraining, and plasma lipoproteins. STRRIDE: a randomized, controlled study of exercise intensity and amount. J Appl Physiol. **103**(2): 432–42.
- 15 Svacina S, Owen K, Hendl J, et al. (2007). Comparison of lipid lowering effect of sibutramine in patients treated or not treated with statins--3 month follow-up. Prague Med Rep. **108**(4): 333–8.

- 16 Taskinen MR (2003). Diabetic dyslipidaemia: from basic research to clinical practice. Diabetologia. **46**(6): 733–49.
- 17 Thyfault JP, Kraus RM, Hickner RC, *et al.* (2004) Impaired plasma fatty acid oxidation in extremely obese women. Am J Physiol Endocrinol Metab. **287**(6): E1076–81.
- 18 Tjonna AE, Lee SJ, Rognmo O, et al. (2008). Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation. **118**(4): 346–54.
- 19 Tsekouras ÝE, Magkos F, Kellas Ý, *et al.* (2008). High-intensity interval aerobic training reduces hepatic very low-density lipoprotein-triglyceride secretion rate in men. Am J Physiol Endocrinol Metab. **295**(4): E851–8.
- 20 Tsimihodimos V, Gazi I, Kostara C, *et al.* (2007). Plasma lipoproteins and triacylglycerol are predictors of small, dense LDL particles. Lipids. **42**(5): 403–9.