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Abstract OBJECTIVES: The term “endocrine disruptor” (ED) is used for compounds that 
mimic or antagonize the effects of endogenous hormones. Synthetic estrogen 
17α-ethinylestradiol (EE2) and a human carcinogen benzo[a]pyrene (BaP) are 
assigned as exogenous endocrine disruptors and an estrogenic hormone estradiol 
is a natural endogenous disruptor. Here, the potency of these three disruptors 
administered to rats individually and in combination to induce expression of 
cytochrome P450 (CYP) enzymes involved in their own metabolism (CYP1A1, 
2C and 3A) in vivo was investigated. 
METHODS: Changes in CYP protein expression after exposure of rats to BaP, EE2 
or estradiol were analyzed by Western blotting. Using the HPLC method, CYP1A1, 
2C and 3A specific activities in hepatic microsomes isolated from exposed rats 
were analyzed. 
RESULTS: Whereas exposure to BaP induces expression of CYP1A1 protein and its 
marker activity (Sudan I oxidation) in liver, kidney and lung of rats, no significant 
induction of this CYP and its enzyme activity was produced by EE2 and estradiol. 
Treatment of BaP in combination with EE2 and/or estradiol decreased the BaP-
mediated CYP1A1 induction in liver of exposed rats. BaP also induces CYP2C11 
protein in rat liver and kidney, but does not increase its enzyme activity measured 
as testosterone 16α-hydroxylation. The enzyme activity of another enzyme of the 
2C subfamily, CYP2C6, diclofenac 4’-hydroxylation, is even decreased by BaP. The 
CYP2C11 protein expression and/or its activity are also increased in liver of rats 
treated with EE2 and estradiol, but its expression is significantly decreased in lung. 
The CYP2C6 activity is also elevated by treatment of rats with EE2 and estradiol 
administered individually as well as in their combination. Whereas only a slight 
increase in CYP3A protein expression was found by BaP in rat liver, its enzyme 
activity, testosterone 6β-hydroxyalation, increased significantly in this organ. In 
contrast, no effect or even a decrease in CYP3A expression and its enzyme activity 
was produced by EE2 and estradiol in rats exposed to these compounds. 
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CONCLUSIONS: The results found indicate that three 
EDs tested in this study, a carcinogen BaP, an estrogenic 
hormone estradiol and its synthetic derivative, EE2, 
might, due to their potential to induce expression of 
CYPs involved in their own metabolism, modulate their 
biological efficiencies. 

Abbreviations: 
AhR  - aryl hydrocarbon receptor
ARNT  - aryl hydrocarbon receptor nuclear translocator
BaP  - benzo[a]pyrene
BPDE  - BaP-7,8-dihydrodiol-9,10-epoxide
CAR  - constitutive androstane receptor
CO  - carbon monoxide 
CYP  - cytochrome P450 
dG-N2-BPDE  - 10-(deoxyguanosin-N2-yl)-7,8,9-trihydroxy-7,8,9,10-
  tetrahydrobenzo-[a]pyrene
DNA  - deoxyribonucleic acid
ED  - endocrine disruptor
EE2  - 17α-ethinylestradiol
GADPH  - glyceraldehyde 3-phosphate dehydrogenase
HPLC  - high performance liquid chromatography 
IARC  - International Agency for Research on Cancer 
mEH  - microsomal epoxide hydrolase
OCs  - oral contraceptives 
PVDF  - polyvinylidene fluoride
PXR - pregnane X receptor
RXR  - retinoid X receptor
SDS-PAGE  - sodium dodecylsulfate polyacrylamide gele electrophoresis
TBST-Tween buffer - Tris-buffered saline with Tween 20 
XRE  - xenobiotic response element

INTRODUCTION
The term “endocrine disruptor” (ED) is used for com-
pounds that mimic or antagonize the effects of endog-
enous hormones, alter the synthesis and metabolism of 
natural hormones, or modify hormone receptor levels. 
Synthetic estrogen 17α-ethinylestradiol (EE2) and a 
carcinogenic environmental pollutant benzo[a]pyrene 
(BaP), belong to the group of chemicals assigned as 
exogenous endocrine disruptive compounds, while 
an estrogenic hormone estradiol, or more precisely, 
17β-estradiol, is a natural endogenous endocrine 
disruptor. 

BaP is a polycyclic aromatic hydrocarbon (PAH) that 
has been classified as human carcinogen (Group 1) by 
the International Agency for Research on Cancer IARC) 
(IARC 2010). BaP and other PAHs are produced mainly 
by incomplete combustion of organic matter and are 
ubiquitous in the environment, leading to measurable 
background levels of exposure in the general popula-
tion (IARC 2010). Beside the inhalation of polluted air, 
the main sources of exposure are tobacco smoke and 
diet (Phillips and Castegnaro 1999; Phillips 2002). BaP 
has been shown to cause cytotoxic, genotoxic, muta-
genic and carcinogenic effects in various tissues and 
cell types (Labib et al. 2012; Lemieux et al. 2012; Sidden 
et al. 2012). Chronic exposure of laboratory animals 

Fig. 1. Proposed pathways of biotransformation and DNA adduct formation of BaP catalyzed by CYP1A1 and mEH. Upper, the typical three-
step activation process by P450 1A1 followed by hydrolysis by mEH leads to BPDE which forms dG-N2-BPDE (adduct 1).Lower, the two-
step activation process by P450 1A1 leads to the formation of 9-hydroxy-BaP-4,5-epoxide that can react with deoxyguanosine in DNA 
(adduct 2). Insert: Autoradiographic profile of BaP-DNA adducts formed by human P450 1A1 in Supersomes™ with mEH in the presence 
of NADH and cytochrome b5 as evaluated by TLC 32P-postlabeling as described previously (Stiborova et al. 2016c).
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to BaP has been associated with the development of 
cancer, primarily in the skin, stomach and lungs (IARC 
2010). 

BaP requires metabolic activation prior to reaction 
with DNA (Baird et al. 2005; Phillips 2005). Cyto-
chrome P450 (CYP) enzymes, mainly CYP1A1 and 
1B1, are the most important enzymes involved in this 
process (Baird et al. 2005; Phillips 2005; Hamouchene et 
al. 2011; Stiborova et al. 2014; 2016a; Krais et al. 2016), 
in combination with microsomal epoxide hydrolase 
(mEH) (Figure 1). First, CYP1A1 enzyme oxidizes BaP 
to an epoxide that is then converted to a dihydrodiol by 
mEH (i.e. BaP-7,8-dihydrodiol); then further bio-acti-
vation by CYP1A1 leads to the ultimately reactive spe-
cies, BaP-7,8-dihydrodiol-9,10-epoxide (BPDE) that 
can react with DNA, forming adducts preferentially at 
guanine residues (Figure 1). The 10-(deoxyguanosin-
N2-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydrobenzo[a]
pyrene (dG-N2-BPDE) adduct is the major product of 
the reaction of BPDE with DNA in vitro and in vivo 
(Phillips 2005). However, BaP is also oxidized to other 
metabolites such as other dihydrodiols, BaP-diones 
and further hydroxylated metabolites (Baird et al. 2005; 
Indra et al. 2013; 2014; Stiborova et al. 2014; 2016a; 
Sulc et al. 2016). Although most of these metabolites 
are detoxification products, BaP-9-ol (BaP-hydroxy-
BaP) is the precursor of 9-hydroxy-BaP-4,5-epoxide 
that can form another adduct with deoxyguanosine in 
DNA (Figure 1). The expression of CYP enzymes of 
the family 1 metabolizing BaP (CYPA1, 1A2 and 1B1) 
is known to be up-regulated by the aryl hydrocarbon 
receptor (AhR); BaP itself can bind to and activate AhR 
thereby enhancing its own metabolic activation (Hock-
ley et al. 2007; Arlt et al. 2008; 2012).

Synthetic estrogen 17α-ethinylestradiol (Figure 2) is 
an additional studied endocrine disruptor. This com-
pound is widely used as the major component in oral 

contraceptives (OCs) (Bolt 1979). Incorporation of an 
acetylenic moiety into the estradiol molecule resulted 
in an increase in the oral availability of the drug. EE2 
undergoes hydroxylation at the 2, 4, 6, and 16 α posi-
tion of the steroid nucleus (Back et al. 1984; Rogers et 
al. 1987; Stanczyk et al. 2013; Zhang et al. 2007). Of the 
hydroxylation reactions, 2-hydroxylation, is clearly the 
major oxidative reaction (Ball et al. 1990) (Figure 2). A 
2-hydroxy-EE2 derivative can be subsequently methyl-
ated in vivo to give 2-methoxyethinylestradiol (Back 
et al. 1984; Rogers et al. 1987). The CYP enzymes 
predominantly contributing to the 2-hydroxylation of 
EE2 in human liver microsomes are CYP2C9 and 3A4, 
whereas CYP2C8, 2C19, and 1A2 contribute to this 
reaction to a lesser extent. Wang et al. (2004) showed 
that recombinant CYP1A1, a predominantly extrahe-
patic CYP enzyme, exhibited higher intrinsic catalytic 
activity than recombinant CYP3A4 and/or 2C9. EE2 is 
also a substrate of various rat hepatic CYPs. Of them 
the CYP2C6 and 2C11 are most efficient in 2-hydroxy-
lation of EE2, forming the major EE2 metabolite 
2-hydroxy-EE2, whereas rat CYP2A and 3A catalyze 
EE2 hydroxylation predominantly to its minor hydrox-
ylation metabolite, whose structure remains to be iden-
tified (Borek-Dohalska et al. 2014; 2015).

There are relatively few reports describing potency 
of EE2 to induce expression of CYP enzymes. An 
increase in levels of CYP2B1/2 mRNAs (Kocarek et al. 
1994) and CYP3A9 activities (Reilly et al. 1991; Jager et 
al. 1999) by EE2 has been reported in rats. However, no 
study investigating the effect of EE2 on induction of the 
CYP enzymes participating in its own metabolism has 
been carried out as yet.

Metabolism of the other tested ED, the hormone 
estradiol (Figure 2), has been extensively studied in 
large numbers of studies. It undergoes extensive oxi-
dative metabolism at various positions (namely, the 

Fig. 2. Positions of estradiol (A) and 17α-ethinylestradiol (B) hydroxylation catalyzed by human cytochromes P450 (A: adopted from Zhu & 
Lee 2005).
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formation of various hydroxylated or keto metabo-
lites) catalyzed by several CYP enzymes present in liver 
and in extrahepatic estrogen target organs (Figure 2) 
(reviewed in Zhu & Lee 2005). Among them, the CYP1 
family (CYP1A1, 1A2 and 1B1), the CYP3A subfam-
ily (CYP3A4/5/7) and CYPs of the 2C subfamily are 
mainly effective in estradiol oxidation (see Figure 2). 
Aromatic hydroxylation at either the C2 or C4 posi-
tion is a major route of estradiol metabolism in humans 
and other mammals, although there is less 4-hydrox-
ylation than 2-hydroxylation. The 2-hydroxyestradiol 
metabolite is considered as a non-toxic metabolite, 
whereas 4-hydroxyestradiol, primarily forming by the 
extrahepatic CYP, CYP1B1, as the genotoxic estradiol 
metabolite (Lee et al. 2003). Several CYPs including 
CYPs of a subfamily 1A (CYP1A1/2), CYP1B1, CYPs 
of a subfamily 2C (CYP2C8/9/19), CYPs of a subfamily 
3A (CYP3A4/5) and CYP2D6 were shown to catalyze 
hydroxylation of estradiol to 2-hydroxyestradiol and/
or 4-hydroxyestradiol (Jin et al. 1993; Hayes et al. 1996; 
Badawi et al. 2001; Chen et al. 2001; Dawling et al. 2001; 
Lee et al. 2003; Lepine et al. 2004). The CYP1A2 and 
3A4 also catalyzes 16α-hydroxylation of estradiol to 
estriol (Badawi et al. 2001). Interestingly, the expres-
sion of CYP1 family is regulated by estradiol (Zhu & 
Lee 2005). But, the induction potential of estradiol on 
further CYP enzymes is still rather enigmatic. 

Here, we examined the effect of treatment of rats 
with BaP, EE2 and estradiol individually and in their 
combination on expression of CYP1A1, 2C and 3A, 
which are the main enzymes metabolizing the exam-
ined EDs. 

MATERIALS AND METHODS
Chemicals
17α-ethinylestradiol, glucose-6-phosphate, NADP+, 
NADPH, 17β-estradiol, benzo[a]pyrene were 
obtained from Sigma Chemical Co. (St. Louis, MO, 
USA); Sudan I from BDH (Poole, UK). Testosterone, 
16α-hydroxyprogesterone and 6β-hydroxytestosterone 
were purchased from Merck (Darmstadt, Germany). 
Glucose-6-phosphate dehydrogenase was from Serva 
(Heidelberg, Germany). Bicinchoninic acid was from 
Pierce (Rockford, IL, USA). All chemicals were of a 
reagent grade or better. All other chemicals were of 
analytical purity or better. 

Treatment of rats and preparation of microsomes
All animal experiments were conducted in accordance 
with the Regulations for the Care and Use of Labora-
tory Animals (311/1997, Ministry of Agriculture, Czech 
Republic), which is in compliance with the Declaration 
of Helsinki. Male Wistar rats (150 g, AnLab, Czech 
Republic), were housed in groups of 3 in wire cages 
at 22 °C with a 12 h light/dark period and ad libitum 
diet (ST-1 diet from Velaz, Czech Republic) and water 
access. 

Rats were treated with BaP (150 mg/kg), estradiol 
(20 mg/kg) and 17α-ethinylestradiol (20 mg/kg) diluted 
in sunflower oil by gavage in one dose. The control 
group received oil.

Microsomes were isolated from livers, kidneys 
and lungs of untreated rats and those of pretreated 
with selected endocrine disruptors by procedures as 
described (Aimova et al. 2007; Stiborova et al. 2002; 
2012a; 2013a; 2013b). Protein concentrations were 
assessed using the bicinchoninic acid protein assay with 
serum albumin as a standard (Wiechelman et al. 1988). 
Total CYP content was measured based on a complex 
of reduced CYP with carbon monoxide (CO) (Omura 
& Sato 1964). 

Western blot analysis
For the detection of cytochrome P450, 75 μg of total 
protein was separated via sodium dodecylsulfate poly-
acrylamide gele electrophoresis (SDS-PAGE) (10% 
acryl amide, Bio-Rad). 

The polyvinylidene fluoride (PVDF) membrane 
after the electrotransfer was blocked in a solution of 
5% skim milk in TBST-Tween buffer (20 mM Tris/
HCl, 150 mM NaCl, 0.1% Tween 20, pH 7.5) for 1 h 
at room temperature. The CYP1A1 was detected with 
a rabit anti-rat CYP1A1 primary antibody (BioTech, 
Czech Republic) (dilution 1:2500), a rabit anti-rat 
CYP2C11 primary antibody (BioTech, Czech Repub-
lic) (dilution 1:1500) and a rabit anti-rat CYP3A1/2 
primary antibody (BioTech, Czech Republic) (dilution 
1:2500) diluted in 5% skim milk in Tris-buffered saline 
with Tween 20 (TBST-Tween buffer) over night at 4 °C. 
After washing in TBST-Tween buffer, membrane was 
incubated with alkaline phosphatase-conjugated rabbit 
IgG anti-rabbit IgG in in 5% skim milk in TBST-Tween 
buffer (dilution 1:1430) for 1 h at room temperature. 
Protein bands were visualized with the alkaline phos-
phatase substrate, 5-bromo-4-chloro-3-indolyl phos-
phate/nitro blue tetrazolium tablet. For densitometric 
evaluation of the intensity of the protein bands, we 
used ImageJ. To assure comparable protein amount 
and expression, we routinely use anti-GAPDH for 
normalization of the Western blot data. This normal-
ization is already included in the presented evaluation.

Sudan I oxidation
The incubation mixtures for measuring the Sudan I 
oxidation contained in a final volume of 0.5 ml: 0.1 M 
potassium phosphate buffer, pH 7.4, 100 μM Sudan  I 
(10 μl of stock methanol solution per incubation), 
1 mM NADPH, and 0.5 mg/ml of protein.

The mixtures were incubated for 30 min, at 37 °C 
in a shaking incubator. The reaction was terminated 
by addition of 1 ml of ethylacetate and then, twice 
extracted with 1 ml of ethylacetate. The extracts were 
evaporated to dryness. The residues were dissolved in 
the mobile phase for high performance liquid chroma-
tography (HPLC) (see below). HPLC analysis: Sudan I 
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and the metabolites were separated on Nucleosil (C18) 
HPLC column (4.6×25 mm, 5 mmm, Macherey-Nagel, 
Germany). The flow rates, mobile phases and detection 
wavelenghts were 0.7 ml/min, 10:90 bicarbonate buffer/
H2O (v/v), and 480 nm, respectively (Stiborova et al. 
2002; 2005). 

Testosterone hydroxylation
The incubation mixtures for measuring the testosterone 
metabolism contained in a final volume of 0.5 ml: 0.1 M 

potassium phosphate buffer, pH 7.4, 50 μM testoster-
one (2.5 μl of stock methanol solution per incubation), 
10 mM MgCl2, 10 mM D-glucose 6-phosphate, 1 mM 
NADP+, 1 unit/ml D-glucose 6-phosphate dehydroge-
nase and 0.5 mg/ml of protein.

The mixtures were incubated for 15 min, at 37 °C in 
a shaking incubator. The reaction was terminated by 
addition of 0.1 ml of 1 M aqueous Na2CO3 containing 
2 M NaCl. The metabolites were extracted with 2×1 ml 
of ethylacetate and the extracts were evaporated to dry-
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ness. The residues were dissolved in the mobile phase 
for HPLC (see below). HPLC analysis: testosterone and 
their metabolites were separated on Nucleosil (C18) 
HPLC column (4.6×25 mm, 5 mmm, Macherey-Nagel, 
Germany). The flow rates, mobile phases and detection 
wavelenghts for were 0.7 ml/min, 65:35 methanol/H2O 
(v/v), and 254 nm, respectively (Borek-Dohalska et al. 
2001; 2010).

Diclofenac 4‘-hydroxylation
The incubation mixtures for measuring the diclofenac 
metabolism contained in a final volume of 0.5 ml: 0.1 M 
potassium phosphate buffer, pH 7.4, 50 μM diclofenac 
(5 μl of stock methanol solution per incubation), 10 mM 
MgCl2, 10 mM D-glucose 6-phosphate, 1 mM NADP+, 
1 unit/ml D-glucose 6-phosphate dehydrogenase and 
0.5 mg/ml of protein.

The mixtures were incubated for 15 min, at 37 °C in 
a shaking incubator. The reaction was terminated by 
addition of 0.1 ml of ice cold acetonitrile. The metabo-
lites were extracted with 1 ml of diethylether and the 
extracts were evaporated to dryness. The residues were 
dissolved in the mobile phase for HPLC (see below). 
HPLC analysis: diclofenac and its metabolite were sepa-
rated on Nucleosil (C18) HPLC column (4.6×25 mm, 
5 mm, Macherey-Nagel, Germany). The flow rates, 
mobile phases and detection wavelenghts were 
0.5 ml/min, 1,5:2 acetonitrile/acetate buffer (v/v), and 
280 nm, respectively (Transon et al. 1996).

RESULTS 
The effect of treatment of rats with BaP, EE2 and estradiol 
either alone or in their combinations on expression and 
specific activity of CYP1A1, CYP2C6/11 and CYP3A
Because CYP1A1, 2C and 3A enzymes were found to be 
the major enzymes metabolizing tested EDs (BaP, EE2 
and estradiol), their effects on expression of these CYP 
enzymes were investigated in rats in vivo.

In the case of BaP, which is known to act as a strong 
inducer of CYP1A1 (Hockley et al. 2007; Arlt et al. 2008; 
2012; 2015; Hodek et al. 2014; Stiborova et al. 2014; 
2016b), exposure of rats to this carcinogenic ED led to 
induction of CYP1A1 protein expression in all tested 
organs (liver, kidney and lung) (Figure 3A). The highest 
induction effect of BaP on CYP1A1 was found in the 
liver (almost 8-times as compared to control, untreated, 
rats). Whereas BaP strongly induced rat CYP1A1, no 
significant induction of this CYP enzyme was pro-
duced by EE2 and estradiol. When these disruptors 
were administered to rats with BaP, they decreased 
the degree of the BaP-mediated CYP1A1 induction 
in rat livers (see Figure 3A). These results essentially 
correspond to the CYP1A1 specific activity (Sudan I 
hydroxylation) (Stiborova et al. 2002), which was also 
increased in hepatic samples of rat treated with BaP 
alone (6.9-times) and together with EE2 (5.7-times). 
However, treatment of rats with BaP together with 

estradiol increased Sudan I oxidation, by 8.4-times as 
compared to control, untreated rats (Figure 3B).

Since CYP2C11/2C6 are major enzymes catalyzing 
conversion of EE2 to 2-hydroxyEE2 (Borek-Dohalska 
et al. 2014; 2015) and they also oxidize estradiol (Zhu & 
Lee 2005), the effect of tested EDs on induction of these 
enzymes was also investigated. The results found indi-
cate that expression of CYP2C11 was slightly increased 
in liver of rats exposed to all EDs either administered 
individually or in combination of BaP with EE2. An 
increase in CYP2C11 protein expression by tested 
EDs in rat livers correlated with an increase in its spe-
cific enzyme activity, testosterone 16α-hydroxylation. 
Both EE2 and estradiol also elevated enzyme activity 
of CYP2C6, diclofenac 4’-hydroxylation (Figure  4C). 
On the contrary, treatment of rats with all EDs down-
loaded expression of CYP2C11 in lungs (Figure 4A). 
EE2 together with estradiol did not change the levels of 
CYP2C11 in rat kidney and lung, but led to a decrease 
in CYP2C11 protein expression in liver (Figure 4A). 
These findings correspond to the results of Laurenzana 
et al. (2002), who postulated that in EE2-treated rats, 
this compound may covalently bind to CYP2C11, 
resulting in degradation of the enzyme, rather than 
regulating of its expression. 

Surprisingly, BaP also induces CYP2C11 protein in 
liver and kidney of rats exposed to this ED, but does not 
increase its enzyme activity measured as testosterone 
16α-hydroxylation. The enzyme activity of CYP2C6, 
diclofenac 4’-hydroxylation, was even decreased by BaP 
(Figures 4B and 4C). 

The CYP3A enzyme was detectable only in kidney 
and liver of untreated rats and rats exposed to EDs. 
A slight, but non-significant, increase in CYP3A 
protein expression was produced by BaP in rat liver 
(Figure 5A). However, CYP3A enzyme activity, testos-
terone 6β-hydroxylation, was significantly increased by 
treatment of rats with this carcinogenic ED alone or in 
combination with estradiol (Figure 5B). The CYP3A 
expression levels and its enzyme activity, testosterone 
6β-hydroxylation, in liver decreased after treatment of 
rats with two other EDs (EE2 and estradiol) alone or in 
combinations (Figure 5). This finding corresponds to 
results found by Lin et al. (2002), who found that EE2 
inactivated testosterone 6β-hydroxylation catalyzed by 
a human CYP3A orthologue, CYP3A4, in a mecha-
nism-based manner. Recently we found that EE2 acts 
either as a reversible inhibitor of CYP3A-mediated pro-
gesterone 6β-hydroxylation or inactivates CYP3A- and 
CYP2C-catalyzed testosterone 6β-hydroxylation and 
progesterone 21- or 16α-hydroxylation, respectively, 
in a mechanism-based manner (Borek-Dohalska et al. 
2010; 2014). 

In kidney, CYP3A level increased after treatment of 
rats with BaP combined with EE2. Other EDs did not 
affect its expression level in kidney, except of BaP and 
combination of EE2 with estradiol, which decreased 
expression of this enzyme (Figure 5A).
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Fig. 5. Expression of CYP3A1/2 in microsomal samples isolated from untreated rats (CTRL) and rat premedicated with BaP, EE2, ESTRA and 
their combinations (A) and CYP3A specific activity measured as testosterone 6β-hydroxylation (B) in these samples. Insert: representative 
Western blots of rat liver CYP3A1/2. GAPDH was used as loading control and representative blots are shown.

DISCUSSION
The results showing that BaP induces expression of 
CYP1A1 enzyme corresponds well to a known potency 
of this compound to act as the activator of AhR, which 
finally leads to elevated expression of CYPs of the 1A 
subfamily and CYP1B1. Namely, expression of these 
CYP enzymes is regulated by the xenobiotic response 
element (XRE), involving ligand-activated AhR (Nebert 
and Jones 1989; Nebert et al. 2000). AhR binds variety 
exogenous ligands such as PAHs including BaP. AhR is 
a cytosolic transcription factor that is normally inactive, 
bound to several co-chaperones (Cox & Miller 2004). 
Upon ligand binding to chemicals such as BaP, the 

chaperones dissociate, which results in AhR translocat-
ing into the nucleus and dimerizing with AhR nuclear 
translocator (ARNT), leading to changes in gene tran-
scription (Denison & Nagy 2003). 

The increase in protein expression of CYP2C11 by 
exposure of rats to BaP and BaP with EE2 in liver and 
lung was, however, rather surprising. The enzymes of 
the CYP2C subfamily are the constitutive CYPs, nev-
ertheless, they might also be slightly induced by the 
mechanism that involves activation of nuclear consti-
tutive androstane receptor (CAR) (Kodama & Negishi 
2007). Examples for CAR-regulated genes are members 
of the CYP2B, CYP2C, and CYP3A subfamilies (Ueda et 
al. 2002). This transcriptional regulator is constitutively 
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active in the absence of ligand and is regulated by both 
agonists and inverse agonists. Ligand binding results in 
translocation of CAR from the cytosol into the nucleus, 
where the protein can bind to specific DNA sites, called 
response elements. Binding occurs both as a mono-
mer and together with the retinoid X receptor (RXR) 
resulting in activation or repression of target gene 
transcription. Several eobiotics (i.e. steroid hormones) 
and xenobiotics (i.e. many drugs, but not PAH such as 
BaP) act as ligands binding to CAR (Kawamoto et al. 
1999). Concerning the other EDs investigated in this 
work, both steroid hormone estradiol and its synthetic 
derivative increase expression of CYP2C11 protein and 
its enzyme activity, which is in accordance with the 
mechanism of CAR activation by steroid hormones. 
Because BaP increases an induction potential of EE2, 
the interaction between CAR and AhR seems to occur 
in this process. However, this suggestion needs to be 
investigated in further studies. 

Induction of CYP3A, which is regulated mainly 
by the pregnane X receptor (PXR) (Rendic and Di 
Carlo 1997), is essentially not mediated by the tested 
EDs, estradiol and EE2 even decreased its expression. 
An increase in CYP3A activity measured as testos-
terone 6β-hydroxylation was, however, induced by 
BaP and BaP in combination with estradiol. Based 
on these results, this increase should results from the 
mechanism(s) that is different from the direct induction 
of the CYP protein; a stimulation of CYP3A activity by 
these compounds might be one of the reasons. Indeed, 
CYP3A enzyme activity is known to be stimulated by 
a variety of endogeneous and exogeneous compounds 
(Rendic and Di Carlo 1997; Rendic & Guengerich 2015; 
Stiborova et al. 2012b). The investigation of effects of 
BaP and BaP with estradiol on CYP3A enzyme activ-
ity in vitro is hence planned to be carried out in future 
studies. 

CONCLUSIONS
The results found in this work demonstrate that three 
EDs tested in this study, a carcinogenic pollutant BaP, 
an estrogenic hormone estradiol and its synthetic 
derivative, EE2, might, due to their potential to induce 
expression of CYPs involved in their own metabolism, 
modulate their biological efficiencies. Further, even 
though BaP has been found to induce several CYPs 
in previous studies, the induction potency of EE2 and 
estradiol or these compounds with BaP is shown in this 
work for the first time. Because of the complex interac-
tions of tested EDs on expression of CYP1A1, 2C and 
3A and their enzyme activities, these compounds might 
participate in drug-drug interactions that may result in 
problems of their clinical significance.
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