Cytochromes P450 reconstituted with NADPH: P450 reductase mimic the activating and detoxicating metabolism of the anticancer drug ellipticine in microsomes.
OBJECTIVES: Ellipticine is a potent antineoplastic agent exhibiting multiple action mechanisms. Recently, we found that after cytochrome P450 (CYP)-mediated oxidation ellipticine forms covalent DNA adducts. Ellipticine oxidation by isolated CYP and its binding to DNA is the target of this study.
METHODS: High performance liquid chromatography (HPLC) was employed for separation and characterization of ellipticine metabolites generated by CYPs. The (32)P-postlabeling technique was utilized to determine ellipticine-DNA adducts.
RESULTS: Purified CYP enzymes reconstituted with NADPH:CYP reductase oxidized ellipticine to up to five metabolites, 7-hydroxy-, 9-hydroxy-, 12-hydroxy-, 13-hydroxyellipticine and ellipticine N(2)-oxide. However, only CYP1A1 was capable to form all metabolites. Using the reconstituted enzymatic system, we demonstrated that the detoxication ellipticine metabolites, 7-hydroxyellipticine and 9-hydroxyellipticine, are mainly generated by CYP1A1 and 1A2, while those responsible for DNA binding, 13-hydroxy-, 12-hydroxyellipticine and ellipticine N(2)-oxide, by CYP3A1 and 2C3. Likewise, the most efficient CYPs forming DNA adducts from ellipticine were CYP3A1 and 2C3.
CONCLUSIONS: The results showed that the system of purified CYPs reconstituted with NADPH: CYP reductase proved for ellipticine oxidation provide a true reflection of the situation in the microsomal membrane....
Citation
Kotrbová V, Aimová D, Brezinová A, Janouchová K, Poljaková J, Frei E, Stiborová M. Cytochromes P450 reconstituted with NADPH: P450 reductase mimic the activating and detoxicating metabolism of the anticancer drug ellipticine in microsomes. Neuro Endocrinol Lett. 2006 Dec; 27(Suppl 2): 18-22