: Pineal gland, by the diurnal rhythm of synthesis and release of its principal hormone, melatonin (MEL), is involved in reciprocal relationships between neuroendocrine and immune systems, responsible for keeping internal homeostasis in vertebrate animals. In this paper the experimental data, indicating that both strategic (developmental, thus antigen independent) and emergency (evoked by antigenic activation of the mature immune system) levels of interactions between pineal gland and immune system, operate in mammals and birds, are reviewed. The cells and organs of immune system using membrane receptors as well as nuclear orphan receptors perceive MEL message. Effects exerted by MEL on immune parameters are different, and depend on several factors, including dose and way of MEL application, species, sex, age of animal, its immune system maturation, way of immune system activation, and parameter examined, as well as the season, circadian rhythm of both immunity and pineal gland function, stressful conditions, accompanying experimental procedure, etc. In turn, lymphoid organ-derived hormones and cytokines, soluble factors secreted by activated immune cells act as messages understood by the pineal gland, closing the regulatory loop of the bi-directional functional connections between both systems.